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Introduction

1.1 Overview

The MIT Laboratory for Computer Science (LCS) is an interdepartmental laboratory whose
principal goal is research in computer science and engineering.

Founded as Project MAC in 1963, the Laboratory developed one of the world's earliest
timeshared computer systems. This early research on the Compatible Time Sharing System
(CTSS) and its successor, MULTICS, made possible innovative developments such as the
writing of operating systems in high level programming languages, virtual memory, tree
directories, online scheduling algorithms, line and page editors, secure operating systems,
concepts and techniques for access control, computer-aided design, and two of the earliest
computer games-space wars and computer chess.

These early developments laid the foundation for the Laboratory's work in the 1970's on
knowledge-based systems-for example, the MACSYMA program for symbolic mathematics-
natural language understanding, and (with BBN) the development and use of packet net-
works. During this same period, the Laboratory developed theoretical results in complexity
theory and linked cryptography to computer science through concepts and algorithms for
public encryption (RSA). In the late 1970's, Project MAC, renamed as the Laboratory for
Computer Science (LCS), embarked on research in clinical decision making, the exploration
of cellular automata at the borderline between physics and computation, and on the social
impact of computers. At the same time, it began two major research programs in distributed
systems and languages, and in parallel systems. These led to the notion of data abstractions
and the Clu language, the Argus distributed system, the dataflow principle and associated
languages and architectures of parallel systems, local area ring networks, program specifi-
cation, and workstation development, where the Laboratory contributed the earliest UNIX
ports and compilers, and the NuBus architecture, now used in commercial computers like
Apple's Macintosh II. This research has also led to the X Window System, a computer
intercommunication standard, developed together with Project Athena.

The Laboratory's current research falls into four principal categories: Parallel Systems;
Systems, Languages, and Networks; Intelligent Systems; and Theory. The principal technical
goals ai I expected consequences in each of these four categories are as follows: V

In Parallel Systems, we strive to harness the power and economy of numerous processors
working on the same task. Research in the area involves the analysis and construction
of various hardware architectures and programming languages that yield, over a broad set
of applications, cost-performance improvements of several orders of magnitude relative to
single processors. This research is expected to affect most of tomorrow's machines which we
expect to be of the multiprocessor variety-not only because of potential cost-performance
benefits, but also because of the natural, yet unexploited, concurrence that characterizes
contemporary and prospective applications from business to sensory computing.

In Systems, Languages, and Networks, our objective is to provide the concepts, methods,
and environments that will enable heterogeneous computers, each working on different tasks,
to communicate efficiently, conveniently, and reliably with each other in order to exchange
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Introduction

information needed and supplied by their respective programs. Such communication may
invole, beyond conventional electronic mail and file transfer, the calling of programs in
one environment from programs in another, perhaps different, environment; the storage and
sharing of structured data among such programs; and the use of an "- formation infrastructure
consisting of common computer and communication resources. This research is also expected
to have a broad impact on future systems because virtually every machine will be connected
to some network.

Taken together, these two thrusts in parallel and networked machines signal our expectation
that future computer systems will consist of multiprocessors interconnected by local and long
haul networks, and perhaps some day by national network infrastructures as ubiquitous and
as important as today's telephone and highway infrastructures.

In the Intelligent Systems area, our technical goals are to understand and construct programs
and machines tnat have greater and more useful sensory and cognitive capabilities. Examples
include the understanding of spoken messages, systems that can learn from practice rather
than by being explicitly programred, and programs that reason about clinical issues and
help in clinical decision making. We expect tomorrow's intelligent systems to be easier to
use than today's programs across a broad front of applications.

In our fourth category of research, Theory, we strive to understand and discover the funda-
mental forces, rules, and limits of computer scienc,-. Theoretical work permeates many of
our research efforts in the other three areas, for example, in the pursuit of parallel algorithms
and in the study of fundamental properties of idealized parallel architectures and computer
networks. Theory also touches on several predominantly abstract areas, like the logic of
programs, the inherent complexity of computations, and the use of cryptography and ran-
domness to the formal characterization of knowledge. The impact of theoretical computer
science upon our world is expected to continue its past record of inproving our understand-
ing of and helping us to pursue new frontiers with new models, concepts, methods, and
algorithms.

1.2 Highlights of the Year

Research highlights (luring the reporting period were as follows:

1. Through the Laboratory's Spoken Language Systems Group, we began exploration of
an international interpretive telephony effort. Users of this telephonle would speak in
their native tongue using a limited vocabulary of a few hundred words in a narrow
domain of discourse, as in for example, appointments, visits, and travel plans that lead
to meetings. Each sentence would be translated through an intermediate la:guage
(I.L.) to the language of the other party. It would also be simultaneously translated
back from I.L. to the original language to ensure the system "understood" what was
said. To (late, we have secured informal partnerships in Europe and Japan for the
purpose of carrying out this research.

13



Introduction

2. Professor David Teinenhouse and his associates began research on computer worksta-
tions 'hat will deal with video images, just as today's workstations handle text. Novel
processing-on-the-fly methods are being explored in this area, in addition to the more
traditional retrieve-proces -'nd-store techniques. Visual images are likely to be used
increasingly because people are becoming more used to them and because they can cut
across linguistic barriers.

3. Professor Stephen Ward completed a prototype of the NuMesh-a "Tinkertoy" system
that enables special purpose computers to be built out of general purpose, small size
blocks. The resultant machines are expected to carry out special purpose processing
at very high speeds.

The Laboratory's Distinguished Lecturer Series included presentations by John Hennessy,
Bell Professor of Electrical Engineering and Computer Science, Stanford University; Terrence
J. Sejnowski, Director, Computational Neurobiology Laboratory, Salk Institute and Profes-
sor of Biology and Physics, University of California, San Diego; Ronald L. Graham, Adjunct
Director, Research, Information Sciences Division, AT&T Beli Laboratories; Robert M. Met-
calfe, Ethernet Inventor and 3Corn Corporation Founder; and Gordon Plotkin, Professor of
Computer Science, University of Edinburgh.

Professors Leo Guibas and Mauricio Karchmer both joined the Laboratory as members of
the Theory of Computation Group and Messrs. Joseph Polifroni of the Spoken Language
Systems Group and Kenneth Streeter of the Information Mechanics Group became members
of the research staff. Changes in the administrative staff included the departure of Mr.
William Fitzgerald, who was replaced as Fiscal Officer by Ms. Azadeh Djazani, and the
assignment of Ms. Carol Robinson to Personnel Officer.

The Laboratory is organized into 15 research groups, an administrative unit, and a computer
service support unit. The Laboratory's membership includes a total of 400 people--l0
faculty and research staff, 40 visitors, affiliates, and postdoctoral associates, 35 support staff,
160 graduate students, and 55 undergraduate students. The academic affiliation of most of
the faculty and students is with the Department of Electrical Engineering and Computer
Science (EECS).

The Laboratory's funding comes predominantly from the U.S. Government's Defense Ad-
vanced Research Projects Agency, which accounts for about half of the total. In addition,
we are funded by and have extensive links with industrial organizations. These include part-
nerships for the construction of major hardware systems, consortia for the development and
maintenance of standards, like the X Window system, and joint studies on research areas
of common concern. Technical results of our research in 1989-90 were disseminated through
publications in the technical literature, through Technical Reports, numbered 454 through
479, and Technical Memoranda, numbered 401 through 432.
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Advanced Network Architecture

2.1 Introduction

The goal of the Advanced Network Architecture project continues to be the definition of a
protocol architecture that will achieve application data transfer at a gigabit or more while
meeting other requirements for quality of service and media independence. The central
problem of our group has been the management of bandwidth, switching capacity, and
buffer resources within the network. If we are to achieve higher speeds and larger size, the
tradeoffs among these resources must change, and new algorithms and approaches will be
needed.

In the following sections, a number of specific projects related to this overall goal are de-
scribed.

2.2 Rate-based Flow Control

Previously, we proposed rate-based flow control as a key concept for resource management in
tomorrow's networks. Zhang's thesis [300] proposed a specific control scheme for rate-based
control, including the resource allocation algorithm in the gateway and a matching control
scheme in the host. The concept of a virtual clock to meter the traffic in the various flows is
central to the scheme. Extensive simulation indicates that the scheme has great promise.

An analysis performed by Liang Wu (on sabbatical from Bellcore) related the Zhang virtual
clock scheme to another scheme, the so-called leaky bucket scheme being proposed for resource
management in telephone networks.

Helmut Rebstock, a visiting scientist from Siemens Corporation, and James Davin simulated
the behavior of a novel rate adjustment algorithm proposed by David Tennenhouse. By this
algorithm, packets are always generated at the maximal desired rate, but only a ccrtain
portion of the generated packets represent useful data: the rest are "empty" packets. The
receiver periodically sends control information to the transmitter about the rate at which
packets are actually received, and the transmitter adjusts the relative rate of empty packet V
transmission accordingly. Simulation showed that this algorithm successfully copes with
congestion in simple networks, but it does not extend well to more complicated topologies.
Tennenhouse subsequently proposed an extension of the empty packet scheme by which a
congested packet switch discards empty packets first. This augmented scheme has not been
simulated to date.

2.3 Protocol Performance Studies

In order to explore the contrast between rate-based and window-based flow control mecha-
nisms, Rajiv Jain, a visiting scientist from the ITT in India, undertook to study the behavior
of TCP in the presence of high bandwidth, long delay links. Jain simulated the slow-start
TCP algorithm over gigabit links with transcontinental delays. Initial results suggested that.
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although TCP afforded good link utilization in a benign en-ironment, it degraded signifi-
cantly in the presence of even modest packet loss. More conclusive results were not pursued
owing to the significant effort required for each experiment.

Another approach to studying TCP behavior was continued by Timothy Shepard. Previously,
a system for collecting and storing about 12 hours of the protocol headers of all the packets
on one of the main Ethernets in the Laboratory had been built and is now in continuous
operation. The system is used as a network debugging aid and as a source of traces to
support research in the analysis of TCP packet traces.

Examination of a trace of packets collected from the network is often the only method avail-
able for diagnosing protocol performance problems in computer networks. Shepard's thesis
[269] explores the use of packet traces to diagnose perform e problems of the transport
protocol TCP. Because manual examination of these traces c,.n be so tedious as to preclude
detailed analysis, a more effective method is developed: the primary contribution of this the-
sis is a graphical method for displaying the packet trace which greatly reduces the tedium
of its analysis.

This graphical method is demonstrated by the examination of packet traces from typical
TCP connections. The performance of two different implementations of TCP sending data
across a particular network path is compared. Traces, many thousands of packets long,
are used to demonstrate how effectively the graphical method simplifies examination of
long, complicated traces. Because the burstiness of TCP transmitters observed in packet
traces seems occasionally related to their achieved throughput, a method of quantifying this
burstiness is presented and its possible relevance to understanding the performance of TCP
is discussed.

To facilitate study of collected packet traces, Shepard developed an interactive, X-based tool
that displays the detailed behavior of a TCP connection according to the graphical method
he describes. This tool, which shows the timing relationship of the various events in the
protocol transaction, permits a sophisticated analyst to diagnose and debug TCP problems
at high speed. This tool has been used with great success on local MIT networks and on the
ARPANET to examine a variety of performance and functional problems.

2.4 Fair Queueing in Gateways

James Davin and Andrew Heybey continued their exploration of the "Fair Share" queueing
algorithm developed at Xerox PARC [89]. A series of simulations demonstrated that, in a
connectionless network, a gateway which allocates outgoing link bandwidth according to a
fcir queueing algorithm can effectively regulate and share the use of a trunk, as, for example,
among several government agencies jointly procuring and using a link. In its simplest form,
the algorithm enforces fairness-no user may use more than its fair share of the output
bandwidth. It was shown to be effective in enforcing non-uniform policies by which some
users are accorded a larger share of the bandwidth than others.

17



Advanced Network Architecture

Three fair queueing algorithms were evaluated by simulation: the algorithm originally de-
scribed in [89], a knowr (but previously unexplored) variation on that algorithm that is more
accommodating to bursty sources, and a novel variation on the algorithm that is distinguished
by a simplified buffer management scheme. These three algorithms were evaluated for their
capacity to enforce uniform and non-uniform policies in the face of network demands that
ranged from light to heavy, static to dynamic, cooperative to non-conformant. The consid-
ered algorithms afforded effective policy enforcement in a variety of circumstances for which
traditional first-come-first-served gateway policies failed to do so. As might be expected,
none of the considered algorithms were able to correct for throughput disparities that arise
from closed-loop flow control mechanisms in networks of heterogeneous delays. A paper

describing this work is in preparation.

2.5 Random Drop Queue Management

An algorithm often called random drop has been proposed by various workers in the field as
a simpler alternative to fair queueing for controlled allocation in gateways. Eman Hashem
completed her study of random drop and other congestion-related phenomena [141]. Based on
simulation experiments, she concludes that random drop can compensate for certain peculiar
meta-stable conditions leading to unfair allocation but that random drop cannot compensate
for important and fundamental causes of unfairness, such as different roundtrip times for
connections across the network. Hashem also investigated a variant of the random drop
scheme-early random drop-that aspires to congestion avoidance rather than congestion
recovery. She finds that the success of early random drop is problematic insofar as it depends
upon the development of effective algorithms for dynamic adjustment of the drop rate.

2.6 Next Generation Protocol Architecture

An overall research objective of the group is to synthesize, out of specific study areas, an
overall protocol architecture for the networks of tomorrow.

To this end, David Tennenhouse has considered the relationship between popular nel ,,rk
design strategies and the performance requirements of future network applications. The
ATM (Asynchronous Transfer Mode) approach to broadband networking is presently being
pursued within the CCITT (and elsewhere) as the unifying mechanism for the support of
service integration, rate adaptation, and jitter control within the lower layers of the network
architecture. Tennenhouse prepared a paper [277] concerned with the jitter (variation in
delay) arising from the design of the middle and upper layers that operate within the end
systems and relays of multi-service networks.

In order to augment the ongoing discussion of ATM, Tennenhouse organized the ATM Prac-
titioner's Workshop, held January 22-24 at the MIT Endicott House Conference Center.
This conference brought together over 30 individuals with a wide variety of perspectives oi
ATM, and realized an unusual opportunity for discussion between participants in the B-
ISDN standards committees and academic researchers in the field. Although the context of
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the discussion was current ATM standards activity, it focused on reports of recent research
results and proposals for future work.

Exploration of a broad range of architectural issues was realized by the group's participation
in the Internet Research Steering Group Workshop on Very High Speed Networking, held
January 24-26 in Cambridge, MA. David Clark served on the program committee for this
conference and chaired a working group session on protocol implementation. David Tennen-
house made a presentation on relevant results from the ATM Practitioner's Workshop.

The group was able to contribute to the evolution of national networking infrastructure by
participation in a workshop on the NRI Networking Testbed held in December in Reston,
Virginia.

2.7 Research Collaboration

During the current year, the group established a number of key research collaborations that
will augment and advance its research agenda. Among the most important is a collaboration
with Bellcore by which protocol concepts developed within the group will be demonstrated
using a prototype ATM switch under development there. As a part of this effort, members
of this group contributed to the design of key parts of that switch-in particular, the port
controller at the input and output of the actual switch fabric.

David Tennenhouse served on a committee to discuss possible joint ventures between re-
searchers on the MIT campus and at MIT Lincoln Laboratories to explore all-optical net-
working architectures.

2.8 Broadband ISDN Standards Activities

The current efforts within ANSI T1S1 to develop the standards for Broadband ISDN will,
if successful, define the nature of the U.S. telecommunications infrastructure for the next
several decades. Because of the importance of this effort, we attempted to contribute in
ways that preserve and enhance the utility of the network for computer interconnect. David
Tennenhouse attended meetings of the relevant standards committees.

Alan Buzacott also attended standards meetings and wrote an analysis of the broadband
standards process [65]. He concludes that, although the emerging standards may be techni-
cally flawed in some details, the broadband ISDN standards process succeeded in introducing
fundamental conceptual changes into public networks in a timely and appropriate way.

2.9 Internet Naming Services

During the year, a plan for development and deployment of a "white-pages" naming service
for the Internet was prepared. International standards such as X.500 attempt to define
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such a service and, indeed, should be the basis of an Internet service. However, significant
additional effort will be required to realize a practical, standards-based system. An RFC by
Karen Sollins [273] outlines a possible program in this area.

As part of this activity, Trevor Mendez wrote an X.500 Directory User Agent, based on the X
Window System, that works with the Quipu X.500 server from University College, London.
To further simplify the user interface and increase functionality, he also integrated Kerberos
authentication into Quipu.

2.10 Network Management

James Davin continued his efforts to develop the Simple Network Monitoring Protocol
(SNMP), by participation in the relevant Internet Engineering Task Force working groups,
by contributing to documentation of the protocol [68][67], and through trial implementations
and document contributions. His current efforts involve the addition of authentication to
SNMP [115][86][222].

2.11 Advanced Network Simulator

The interactive network simulator that supports much of the simulation work in the group
was further refined and enhanced during this year. New simulator components were crafted
to support a variety of experiments. David Martin developed a facility for the graphical
display of relative link utilizations on links shared by multiple network users. Andrew Heybey
ported the simulator to MIPS M/120 workstation hardware. James Davin and Andrew
Heybey ported the simulator to the Cray 2 supercomputer, although the perforriiance of
this latter port is less than might otherwise be expected owing to the limited opportunities
for vectorization in typical network simulations. A variety of bugs have been fixed, and the
improvements have been released to other interested parties, for whom at least a minimual
level of support is provided. The simulator is being actively used by people at Washington,
Cray, Purdue, and Mitre. ,

2.12 Hardware Development Tools

Jonathan Coburn developed Xil, a digital logic description language embedded in Scheme.
Xil allows digital circuits to be defined in terms of boolean logic functions and registers. It
outputs configuration information for Xilinx reconfigurable logic arrays, a family of software-
programmable gate arrays. Xil's Scheme embedding allows hardware descriptions to be
generated algorithmically, while use of the Xilinx LCAs allows complex designs to be rapidly
instantiated as single, reusable chips.

Xil is described in [76]. It is currently in use as a hardware development tool in support of
other ANA research activities.
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2.13 Internet Protocol Committee Participation

Because of the continuing importance of the Internet protocol suite, and because of the
potential cross-fertilization between our research goals and the future needs of the Internet,
members of the research group continue to participate in Internet working groups. During
the year, David Clark resigned as chairman of the Internet Activities Board, a position he
had held since 1981. He continues to serve on the IAB, and chairs one of its two subcommit-
tees, the Internet Research Steering Group. Members of the group have attended Internet
Engineering Task Force meetings, as well as IETF working groups and ad hoc committees
as appropriate, including various meetings to discuss naming in the Internet. Of the various
activities of the Internet Research Task Force, Clark contributed to the End-to-End Re-
search Group, and both Clark and Karen Sollins participated in the Autonomous Networks
Research Group.
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3.1 An Artificial Intelligence Approach to Clinical Decision Mak-
ing

3.1.1 Background and Significance

In the explosion of new knowledge, new methods, new regulations, stringent pressures to
reduce costs, and higher expectations from patients for better outcomes, medicine faces a
major problem of information management and utilization. During the past decade, many
independent studies of this complex of problems have settled on medical informatics as the
field promising to help alleviate this problem. From the GPEP report of the early 1980's,
to the NLM's planning reports of the mid-1980's, to this year's recommendation at the
Harvard Medical School to establish a center for medical informatics and to assure that all
medical students are trained in this discipline, the need for more sophisticated computer-
based applications in medicine is clearly identified. These are to be applications that in some
sense "understand" the content of the information they manipulate.

The idea that one can develop computer programs that assist in making diagnostic a.nd
therapeutic decisions, or that track the ongoing state of a patient and comment on the
appropriateness of therapy is hardly "ovel, of course. Flowchart and statistical classification
models dating back to the early 1960's have played a small beneficial role in enhancing
medical care, and systems of almost equal vintage that rely on a fairly complete online
medical record have provided trend analysis and simple "sanity checks" for evolving patient
cases. Systems based on online medical records have limited their reasoning to issues that
could be adequately addressed by data that were typically available, which in most cases fails
to capture much of what is clinically relevant. The scarcity of adequate background data, and
the lack of modularity and internal organizational structure in the classification models, has
prevented their construction for large medical domains and has seriously impaired th,- ability
of developers to maintain them [264]. In response to these inadequacies, researchers turned
in the early 1970's to artificial intelligence methods, to provide tools for building programs
with more "understanding." By adopting a consultation model, where the program is to be
able to ask questions of its users, the inadequacy of computer-accessible information could
be overcome (though of course at a high cost in time demanded of the user). Pc-:p7 u,.re
fundamentally, these programs pursued the hypothesis that one could overcome the lack of
statistical data by substituting for it the codified expertise of human expert clinicians. This
is not to say that one would simply ask people to guess statistical correlations instead of
gathering data on them. Instead, the idea was to discover the reasoning and problem-solving
strategies used by human experts, to de-brief them of the knowledge they use, in thc fornm
in which they use it, and then to build computer programs that operate according to the
same principles and with the same knowledge.

3.2 State of the Art in Medical Al

Since the early 1970's, the field of medical Al has provided a number of impressive demon-
strations of programs able to capture human-like expertise and to apply it in human-like
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ways that seem acceptable to their users. Systems such as the Present Illness Program [244]
and the Digitalis Therapy Advisor [131] from our group, anid MYCIN, INTERNIST-I [2251, and

CASNET/Glaucoma [294], provided early indications that such AI programs could overcome
previous methodological limitations to provide human-like expertise in a computer. Indeed,
tests of these and successor programs Lpve several times confirmed that, within a typically
narrow set of circumstances, the performance of the program was (nearly) indistinguishable
from that of expert physicians [298][225][146][34j.

Sadly, despite these documented successes, the practical utility of programs of this sort in
medicine remains very limited-essentially only a few such programs (PUFF, ONCOCIN and
a serum electrophoresis interpretation program built into an instrudent by H]Iena Labora-
tories) receive any routine use [75], and then typically at medical centers closely associated
with their developers. Interestingly, the techniques developed for some of these medical pro-
grams have been generalized and exported to commercial and industrial areas of application,
where they have formed the basis for a significant "expert systems" revolution [107].

Why have medical Al programs not succeeded practically, when they appear to have suc-
ceeded in the laboratory? One hypothesis is that the fundamental technology of these
systems is fine, but that much more engineering effort is needed to bring them to successful
use. Another, which motivates us here, is that there really are fundamental deficiencies in
the techniques on which these systems are based-deficiencies that prevent their functioning
as well as is necessary for widespread adoption.

No doubt better engineering will be needed for the success of medical expert systems. Thus,
work is needed on comprehensive medical record systems that contain a timely, complete and
accurate view of the patient and the care he or she is getting. Outstanding user interfaces,
which exploit the power of graphical output and voice input would also be a boon. Improved

ancillary services to train potential users and more thoroughly integrate computer systems
into the fabric of health care are also likely to be needed. In addition, work on standards for
medical terminology, large scale knowledge bases organized for teaching and reference, and
integration of patient care, research, library, image, and electrical signal databases into a
uniformly-accessible information system is an important goal. Nevertheless, we subscribe to
the second of the above hypotheses, that even significant advanccs toward all these laudable
goals would leave fundamental gaps in our ability to build truly usable systems.

3.3 Sources of Difficulty

Among the major difficulties identified in building medical reasoning systems are the han-
dling of multiple interacting diseases, interactions between diseases and incomplete or only
partially-effective therapies, the iieed to take time into account in both diagnostic and ther-
apeutic reasoning, and real time constraints on decision making. Each of these has severely
stressed the basic mechanisms of even the most successful demonstrated programs, and each
suggests that there is much additional need for research.

The need to deal with unanticipated interactions has meant that programs have turned from
relatively simple means of associating clusters of abnormal findings with dicease hypotheses
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to much more complex means of assembling hypotheses that represent multiple co-occurring
disorders. Often, this has required new causal and probabilistic models of the interactions

among disorders and the ways in which disorders manifest as abnormal findings. Thus, the
knowledge base of recent medical Al programs is typically quite complex; their reasoning

methods are inulti-facettd and involved, their conclusions are difficult to explain because of
this complexity, and the programs are hard to build, debug and maintain.

Five years ago, we suggested one approach to alleviating so..e of these problems, based on
the adoption of a common underlying knowledge representation mechanism. Unfortunately,
though we have shown some progress in this direction, the existing knowledge representation

formalisms at our disposal have not been up to the task-the complexity and breadth of types
of knowledge that need to be represented in medical reasoning overwhelms the abilities of
existing techniques.

In addition, as the medical Al field has matured and the ambitions of specific projects
have increased, it appears to take longer and longer for an interesting new idea to move
from conception to demonstration in an effective program. The need to hand-tailor medical
knowledge bases specific to a particular project, as well as to develop a complex set of
technical capabilities, has meant that often five years may elapse from inception of an idea
to its initial demonstration. This observation naturally leads to the suggestion that perhaps

computer learning techniques could serve to allow the machine to be a more active partner in
building new programs. Until recently, we felt that many of the learning methods explored
in the Al literature were not likely to be directly applicable to our problems. Such methods
fell into two camps: methods based on statistical learning gave no place to hard-earned
knowledge that we already possessed, and it seemed implausible to ask automated learning
techniques to rediscover all the existing knowledge of medicine. Conversely, most symbolic
learning methods assumed a deterministic underlying domain, in which noise or stochastic

behavior would lead either to no learning or to internal contradictions.

3.4 Artificial Intelligence and Cardiovascular Reasoning

3.4.1 Diagnosis

The heart-failure diagnosis program provides two types of L.agnostic informatiui; it deter-
mines the probability of parameter states in the physiologic model, and it generates differ-

ential diagnioses each of which fully explains the set of findings.

T'he iodel for diagnosis consists of nodes copied from the parameter states with binary values
and rnivaurvreient values (the findings) connected by links with probabilities determined

fromn the knowledge base and patient input. The probabilities are combined using a "noisy-
or" combination rule [24,5] e: 'pt for worsening factors, which require another cause, and
correcting factors, which decrease the probability. Thus, if causes are P, worsening factors
I, correcting factors C, and primary probability is po, the probability of a node is:

P A (p, 1.0) ;. 1.0'1i I P :C;.F' (I I- (1 p.)) H-(1 - p,), else 1
tE PW tEC
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Similarly, each measurement value has a probability of being produced by liodes. The model
is similar to those investigated by Pearl [2451 as Bayesian probability networks. The difference
is that this model has forward loops (excluded by Pearl) and nodes with multiple paths
between them (handled only in exponential time by Pearl's methods). We investigated
modifications to Pearl's algorithm and to our model. However, eliminating the forward
loops in an earlier model version there were still about 40 links that would have to be cut
to analyze multiple paths between nodes. Thus, Pearl's algorithm would require weighted
summing of about 240 solutions, which is completely infeasible. Indeed, Cooper has shown
that the problem is NP-hard [79]. Thus heuristic methods are necessary to handle large
networks.

After much investigation we developed a mechanism for estimating the probability of a node
given evidence. It is based on the causal paths from primary nodes to the node in question.
Since only about 50 of the 150 nodes in the model are primary (having a non-zero probability
of existing without some other cause), it generates and stores all of the paths from these nodes
to all others and computes the probabilities along those paths. The paths are generated when
the model is first loaded and the probabilities are computed when the patient data is entered.
A conservative approximation of the causal probability of any node is the combination of
the highest probability paths from each of the primary nodes to that node, assuming the
independence of the causes and the default combination rule. Explicit causal combinations
( e.g., the worsening factors) are handled by revising the probabilities along the paths for
the estimated probabilities of these additional factors. This mechanism has proven to be an
effective way of estimating the causal probabilities of nodes. To determine the probability of
a node we treat the evidence evaluation problem as locally computing the probability of the
observed effects given each combination of causes. This mechanism estimates the probability
of any parameter state given whatever other states or evidence is already known.

Our solution to the differential diagnosis problem is to generate complete hypotheses (causal
paths from primary causes) for the findings and present the user with a list of hypotheses
and their relative total probabilities for comparison. In comparing hypotheses, we discovered
that the natural notion of different hypotheses requires that they differ in some significant
node, nodes which we hve labeled diagnostic. The algorithm is as follows: 1) check the
input for definite implications, findings that require nodes to be true or false; 2) collect
the abnormal findings from the input; 3) find all of the diagnostic or primary nodes that
could account for each finding; 4) rank the diagnostic and primary nodes by the number of
findings they account for; 5) use the better of these as seeds for finding small covering sets
of primary nodes; 6) for each covering set, order the findings by the difference between the
first and second highest probability path to it; 7) for each finding, the best path from the
partial hypothesis is found and added to it; and 8) the hypothesis is pruned of unneeded
primary nodes and extra paths that decrease the probability. Finally, the probabilities of the
hypotheses are computed by multiplying the probabilities of the nodes given the other nodcs
in the hypothesis and they are rank ordered and presented to the user. These probabilities
could be normalized by the probability of the findings but that is unnecessary as long as we
are only rank ordering hypotheses. The algorithm is discussed in detail in a paper [204].

This approach to diagnosis differs considerably from others that have appeared in the litera-
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Figure 3.1: Congestive Cardiomyopathy and Renal Insufficiency Hypothesis

ture. Reggia's minimal set covering approach [252] ignores the fact that the best hypothesis
may not be minimal and would not find the hypothesis in Figure 3.1. Other approaches to
diagnosis based on digital circuit analysis [253][88] assume that every node is primary and
every node can be measured. If every node were treated that way, a network of this size
would be computationally intractable.

Our mechanism is effective for producing a meaningful set of hypotheses for the findings
and it usually takes less than a minute on a Symbolics 3650 workstation. The user can
compare the hypotheses, see explanations, and consider the differences. Figure 3.1 is the
display of the first of five hypotheses generated for an actual patient with findings that
included rales, pedal edema, high BUN, nausea, S3, and runs of VT. The display graphically
presents the complete explanation for the findings and provides a textual summary of the
case at the bottom of the screen. In the display, the findings are in lower case, intermediate
nodes in upper case, primary nodes in bold face, primary probabilities in parentheses, causal
probabilities on links and IV+ indicating worsening factors that increase the probability
and P- indicating correcting factors that decrease it. This hypothesis accounts for the

findings with congestive cardiomyopathy and renal insufficiency, while the second hypothesis
accounts for the findings with congestive cardioinyopathy alone. Those hypotheses niceiy
capture the physician's initial dilemma: whether the high BUN was renal or prerenal. Other
hypotheses included valve disease, which is an important consideration. This hypothesis
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illustrates several features of the algorithm: 1) it handles multiple causes; 2) it handles
multiple pathways between nodes; 3) findings can be left unexplained (the murmur); and
4) iatrogenic causes (digitalis toxicity here) are handled. This kind of explanation is a rich
source of information, proposing mechanisms, showing assumptions, showing where therapies
might be beneficial, and providing enough information for the user to judge whether the
hypothesis is really justified. (This example is discussed in more detail in [205].)

This method of generating hypotheses is heuristic and indeed it is possible to construct
networks where it does not find the best answer. (Notice that only the search is heuristic,
not the use of probabilities.) However, we have tested over 60 actual cases thus far as well
as many created cases and have found the algorithm to be effective. On one set of 42 cases,
collected while developing the algorithm, the performance was tabulated. In 31 of these
the program produced reasonable hypotheses. In five the hypotheses were almost right but
parts of the mechanisms were inappropriate. In the other six cases the best hypothesis was
missed. There were two main reasons for these problems: 1) the program did not reason
appropriately with the temporal relationships between cause and effect, and 2) it did not
handle severity relations appropriately.

3.4.2 Summary

We started with a vision to build a qualitative physiologic model and develop strategies for
diagnostic and therapeutic reasoning using the logical relationships between the physiologic
entities and input values. From the experience gained from this system, we recognized
the need for a probabilistic approach to diagnosis and a quantitative approach to therapy
prediction. To fulfill these needs, we created a practical method for heuristically finding the
best explanations for a set of findings in a large causal probability network and created a
new method for predicting changes in a network of constraint equations based on signal flow
analysis. In addition, we developed a method for using the causal model to guide case based
reasoning, a statistical method for predicting behavior, a control strategy for time dependent
data, and a method for attributing causes to effects over time. These methods give us the
basic tools needed to develop an effective program for assisting physicians in reasoning about
complex cases over single or multiple sessions.

3.4.3 Knowledge Representation and Default Reasoning

Jon Doyle continued his investigation of artificial intelligence using theories and techniques
from economics and decision theory, working in conjunction with Michael Wellman (USAF)
and Ramesh Patil. These investigations yielded numerous papers: Wellman and he improved
their treatments of default reasoning [99], which it now appears will be published in a special
issue of Artificial Intelligence on the best papers from the KR'89 Conference in Toronto. His
paper with Patil on knowledge representation languages [97] will be published in Artificial
Intelligence with a response article by Ron Brachman and Hector Levesque. An expansion of
his paper with Elisha Sacks (Princeton) on probabilistic qualitative reasoning was presented
at IJCAI [981, and has been submitted to Computational Intelligence. A paper on the
philosophical foundations of AI will be appearing in a MIT Press collection on Philosophy
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and Al [92]. He will be presenting a paper on rational belief revision at the third Workshop
on Nonmonotonic Reasoning in June [931. Finally, he gave two invited talks this year, and
will be giving two more in July. His invited talk at the Conference on the Dynamics of
Belief (Sweden) will be appearing in a Springer volume on the Logic of Theory Change [94].

His invited talk at ISMIS'89 appeared in a proceedings volume from North-Holland [91].
He will be speaking on rational self-government at the Second International Conference on
Economics and AI (Paris) in July [95], and giving an invited address on the roles of rationality
in Al at AAAI'90 in August [96].

3.5 Student Progress

3.5.1 Cardiac Arrhythmia Classification (Scott Greenwald)

Automated cardiac arrhythmia detectors perform well at detecting and classifying beats in
clean data, even when compared with humans. However, the performance of automated
systems de-rddes dramatically in the presence of electrode motion noise because of falsely
detected QRS-like artifacts and misclassified noise distorted beats. Current systems detect
and classify beats using a very limited scope of the available information surrounding can-
didate beats. In contrast, human experts perform well in noise corrupted data because they
use prior knowledge of general principles of electrocardiology and information gleaned from
the patient's clean ECG, and because they make use of a wide context of ECG surrounding
candidate beats. This thesis has explored the hypothesis that the use of wide contextual in-
formation within the electrocardiogram and prior knowledge of the signal source can improve
beat detection and classification, and enhance artifact rejection in the field of automated ar-
rhythmia analysis. We tested this hypothesis by developing an expert system (HOBBES)
that emulates techniques used by human experts in processing ECGs. HOBBES was con-
structed as a post-processor to a classical arrhythmia detector (ARISTOTLE). The output
of ARISTOTLE is an annotation stream which contains an entry for each detected event.
Each entry contains ARISTOTLE's suggested beat label, the detection time, an estimate of
the noise within the detected event, and a composite QRS morphology measure. HOBBES
analyzes A.!STOTLE's annotation stream in three passes and creates a final, error re.duced
annotation stream as its output. On the first pass, HOBBES learns contextual information
by developing a nine-dimensional feature space description of patterns of five-beat beqaenvs
seen in clean data. Each five-beat sequence is represented by the five QRS morphology fea-
tures and the four (scaled) interbeat intervals within the five-beat sequence. On the second
pass, HOBBES finds clearly identifiable "landmark" beats (based on morphology or beat
arrival times) within the noisy data. On the final pass, HOBBES compares sequential over-
lapping sequences of the noisy annotation stream to hypothetical five-beat sequences based
upon patterns learned in clean data. The best-fitting hypotheses are selected, and final beat
labels are assigned to each event. The performance of human experts, ARISTOTLE, and
HOBBES was evaluated on a database of half-hour ECG records. Ten percent of each record
was selectively corrupted by adding three minutes of electrode motion noise from an ind,'.
pendent noise database. The results indicate that although the performance of HOBBES
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is worse than human experts for many of the records, HOBBES has significantly enhanced
ARISTOTLE's performance in processing noisy ECGs.

3.5.2 Repeated Sequences and Parameter Uncertainty in Steady-state Systems
(Alex Yeh)

Mr. Yeh has been designing and implementing a program called AIS (short for Analyzer of
Iterated Sequences) that, when given a state-description of a system and a sequence of actions
or transformations on that state, symbolically finds some of the extreme and time-averaged
effects of continually iterating that sequence. The specific effects found at present include 1)
the extreme values of parameters that vary periodically with each iteration, 2) the symbolic
average rate of change in parameters, and 3) an assessment of how those rates of change would
be different with different values for various constants and functions (sensitivity analysis).
The sequences handled by AIS are ones which have the following "constancy": the sequence
always repeats the same actions in the same order and each occurrence of a given action
always changes the parameters by the same amounts. Examples of such iterated sequences
of actions include the ones taken by a heart in going through a beat cycle at steady-state and
the actions taken by a steam engine in making one rotation of its drive shaft at steady-state.
Effects to be found include the extreme pressures in an engine, the average rate at which
blood enters the heart, and how increasing that entering blood's pressure affects that rate.

One motivation for finding such effects is to find what stresses a device needs to tolerate,
such as the maximum pressure an engine or heart is subject to. A second motivation is
that many periodic subsystems iterate at such a fast rate that the other parts of a system
respond only to the behavior of such a subsystem /3 averaged over many iterations. Then
a steady-state model for the entire system would only require a description of /3 's averaged
behavior; #3 can be modeled as a constant iteration of the same sequence of parameter value
changes. Examples of such subsystem and system combinations include 1) the heart and the
human circulatory system, and 2) an engine and a car.

Yeh worked on three examples of using AIS. The first concerns a normal ventricle (part of
the heart). AIS's results are similar to results either derived by others by hand or determined
empirically from experiments. The second example is on a ventricle with a disease called
mitral stenosis. The model in this example is larger and more ambiguous ("qualitative")
than in the first example. The example indicates that AIS can handle fairly ambiguous
models, but that the results will reflect that ambiguity. The third example changes domains
and is on a steam engine. This example is like the second in that it is larger than the first.
But unlike the second one, the steam engine model is a lot more precise on the forms of
the functions involved, and AIS's output reflects this. He incorporated AIS's steam engine
results into a simple steady-state model of a train.

3.5.3 Multi-criteria Operator Selection (Dennis Fogg)

Automated synthesis of VLSI architectures requires selecting operators to implement arith-
metic operations. Two solutions to this task are presented. The first solution extends
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current AI techniques in parametric design by considering multiple performance criteria.
The fundamental obstacle in multi-criteria design is incorporating user preferences about
tradeoffs between performance criteria. We present a new framework, called Heuristically
Guided Enumeration (HGE) that uses expert knowledge to guide enumeration toward opti-
mal designs, and uses heuristics to control enumeration so better designs are created. HGE
encourages the user to explore the frontier of optimal designs by generating fast approxima-
t.:ons tn the frontier. The user controls the enuieration by defining particular regions of the
design space to explore and limiting the cardinality of the designs created. An implemented
system enumerates one millionth of the design space yet produces near optimal results. The
second solution is based on mathematical optimization methods. We formulate the opera-
tor selection task as a linear programming (LP) problem. The LP solution defines a lower
bound on the optimal design, and subsequent processing to discretize the solution produces
an upper bound. The LP approach is combined with Leiserson and Saxe's retiming method
to simultaneously select operators and insert pipeline registers.

3.5.4 Case-based Reasoning (David Aghassi)

In routine problem solving, people reason from experience, remembering their solutions to
recurrent problems rather than reconstructing them from scratch each time. The method of
case-based reasoning attempts to exploit this intuitive strategy on a computer by maintaining
a memory of precedents, and by solving a new case according to the solution of the most
suitable precursor. Diverse applications of the method seem to suggest its viability, but
a widespread lack of thorough evaluation questions this support. Indeed, while previous
work implies that case-based rersoning is successful for a variety of domains, few papers
identify the general relationships between performance and the domain characteristics and
scaling factors that underlie it. Thus, researchers are left without an understanding of the
method's scope or scale, and intuitions about human experience continue to be its primary
justification.

David Aghassi's work addresses many of these open concerns in the context of heart failure
diagnosis, evaluating the existing case-based reasoner CASEY with respect to a pool of 240
patients. To investigate the method's scale, he measured the effects of increasing experience
on both accuracy and efficiency. Hc also analyzed the distribution of cases in order to quantify
its intrinsic regularity, thus exposing the dependence of the system's utility on the domain
and facilitating an extrapolation of this utility to other, similarly characterized applications.
First, he gauged the recurrence of similar cases in varying size collections of patients; second,
he measured the correlation between symptomatic similarity and diagnostic similarity; and
finally, he appraised the absolute diagnostic homogeneity of the case pool.

Because cardiologists claim that most cases are variations on recurring, well understood
pathophysiologic themes, he expected to justify the application and verify the presumed
regularity upon which its success depends. Instead, he discovered that CASEY's accuracy
does not increase with experience, while its efficiency degrades with the number of avail-
able precedents. Fundamentally, similar cases and similar diagnoses were rare among the
240 patients, and moreover, symptomatic resemblances did not guarantee diagnostic cor-
respondence. Because of the varying combination and interaction of multiple diseases, the
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patients were largely heterogeneous, suggesting that the regularity described by cardiologists

occurs at a more detailed level of abstraction, perhaps in the recurrence of diagnostic syn-
dromes comprised within the cases. This more fine-grain uniformity can be exploited only

by analyzing precedents, rather than by applying them in their entirety.

3.5.5 User Modeling for Medical Dialogue Systems (Ira Haimowitz)

We describe a dialogue system between an expert system and its users which combines

two recent hypotheses. First, that the dialogue system should explicitly model both the
person directly interacting with the dialogue system (the agent) and the person reasoned

about by the expert system (the patient) in order to communicate meaningfully with both
people. Second, that a dialogue system can model the domain-related beliefs, preferences

and concerns of both its users and generate responses empathetic to both.

This dialogue system is called SERUM, standing for "System for Empathetic Responses with

User Models." SERUM generates natural language responses about attribute values of domain

objects via three transformations. First, the system converts properties of the agent and
patient, and domain knowledge, into a pragmatic objectives like empathy. Second, SERUM

converts the pragmatic objectives into surface structure cues, like object emphasis and level of

technicality. Finally, SERUM converts the surface structure cues to realize text that is natural,
appropriately technical, and downplaying or offsetting information that is unpleasant or

undesirable to the agent or patient. SERUM is demonstrated in the medical domain of
lung disease for AIDS patients, a sensitive domain where empathetic responses can be quite

important.

3.5.6 Temporal Control Structure (Thomas Russ)

Thomas Russ continued the development of the Temporal Control Structure, an expert

systems development shell for the construction of time dependent monitoring systems. The

major improvements were improvements in the run time efficiency of the implementation,
the creation of development tools for application program development, and the addition of

specialized modules that provide temporal abstractions of data such as dynamic calculations

of fluid and electrolyte balance. Agendas for handling asynchronous events were also added

to the system.

Mr. Russ is currently extending that development and constructing a prototype application
in the acute care of diabetic ketoacidosis. This prototype will provide ongoing management

advice for insulin, fluid, and electrolyte therapy in the acute phase of diabetic ketoacidosis.
Following development, retrospective medical record trials will be conducted during June

and July.

In the past year he explored the role of hindsight in clinical decisions and implemented a

demonstration program showing how such reasoning is supported by the Temporal Control

Structure [257]. The implementation of hindsight was accomplished through the use of

dependency-directed updating and mechanisms for passing information both forwards and

backwards along the time line.
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3.5.7 Symptom Clustering (Thomas Wu)

Thomas Wu's research deals with a new representation and algorithm based on symptom
clustering for diagnosing multiple disorders. The symptom clustering approach partitions
symptoms into causal groups, in contrast to the existing candidate generation approach,
which assembles sets of disorders, or candidates. In other words, the candidate generation
approach explores ways to put disease hypotheses together; the symptom clustering approach
explores ways to put symptomatic evidence together.

Symptom clustering achieves efficiency by generating aggregates of candidates rather than in-
dividual candidates, and by representing them implicitly in a cartesian product form. Search
criteria of parsimony, subsumption, and spanning can help narrow the symptom clusterir'.g
search space. A problem-reduction search algorithm has been devised to explore this space
efficiently. Experimental results on a large knowledge base indicate that symptom clustering
yields a near-exponential increase in performance compared to candidate generation. For
example, some complex cases that require several hours to solve using the candidate gen-
eration approach can now be solved in a matter of seconds using the symptom clustering
approach.

In addition to this theoretical foundation, some preliminary work on probabilistic evalua-
tion of symptom clusterings has been completed. Future research will investigate heuristic
guides for symptom clustering algorithms, including syndromic knowledge, which seems to
be important in human clinical cognition.

3.5.8 Decision Models (Tze-Yun Leong)

Characterizing the knowledge involved in decisions illuminates the representational and coin-
putational requirements for the decision-analytic approach to automated clinical decision
making. This work analyzes the medical knowledge required for formulating decision models
in the domain of pulmonary infections (PIs) with suspected acquired immunodeficiency syn-
drome (AIDS). Based on the analysis, a knowledge representation framework is proposed.
The framework is evaluated by showing how it supports decision model formulation for an
example case.

Aiming to support dynamically generated decision models, the knowledge characterization
focuses on the structural aspects of the decision problem, such as the clinical context, the
classes of evidence, hypotheses, tests, treatments, outcomes, and the behavioral relationships
among them. Concepts, which model the objects, states, processes, and their attributes in
the clinical setting, are the basic building blocks of the representation design. A language
with set-theoretic and probabilistic semantics is devised to describe the concepts and their
context-independent and context-dependent relationships.
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4.1 Introduction

Our group is interested in general purpose parallel computation. Our approach is centered
on:

" Declarative, implicitly parallel languages.

" Dataflow architectures, which are scalable because of their tolerance of increased mem-
ory latencies and support for frequent synchronization. Our vehicles for research in-
clude an abstract "Explicit Token Store" architecture (ETS), hardware prototype im-
plementations of ETS (called Monsoon), various software emulators (GITA, MINT),
and a software emulator for a new proposed architecture called P-RISC.

" Sophisticated compiling and run-time systems for Id, both for dataflow and other
architectures. We have also explored the use of dataflow compiling for an experimental
persistent programming language.

" Applications programs to guide the language, compiler, and architecture research.

Last year, we reported that we began negotiations with Motorola for a project to produce,
as a research prototype, a complete system running Id on dataflow machines using the
Monsoon processor architecture. This year, MIT-Motorola cooperation has moved into high
gear. This involves extensive and daily cooperation in the design and production of the
Monsoon hardware, and in the design and production of the Id programming environment.
Two-node prototypes are expected by the end of summer 1990, and 16-node machines by
spring 1991. To this end, a formal cooperation agreement has been signed, and Motorola
has established and staffed the new Motorola Cambridge Research Center at One Kendall
Square, next door to LCS.

Our main research vehicle for programming languages is Id, which has fine-grained, implicit
parallelism. We have been able to formalize our incremental typing system for Id and to prove
it correct. We have made much progress in developing the "manager" construct in Id, which
is a disciplined way of using imperatives while retaining fine-grained, implicit parallelism and
synchronization. We have continued our work in formalizing Id's operational semantics in
terms of abstract reduction systems. New applications in Id include the Traveling Salesman
Problem using simulated annealing, the Viterbi Search from speech recognition systems, and
various sparse matrix algorithms.

We have made almost a complete transition from the TTDA (Tagged Token Dataflow Archi-
tecture) compilation schemas to new schemas that incorporate the notion of frame storage
in an integral way. Frame storage is now used for extensive loop optimizations. A new back-
end translates these frame-oriented dataflow graphs into code for Monsoon. We have been
studying resource management for Id in great detail, including compiler-directed garbage
collection, as well as numerous versions of frame and heap managers for improved concur-
rency.

The porting of Id World to the UNIX environment (from our original Lisp Machine environ-
ment) is complete, and has been distributed outside MIT.
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The Monsoon wire-wrap prototype, which has now been running for over a year, has been
invaluable for testing our ideas in resource management in Id, for measuring instruction
mixes, and for designing its successor.

The second generation Monsoon processor has been designed using various ASICs. Motorola
has done the board-level design and is fabricating it. The processor incorporates substantial
improvements from the wire-wrap prototype in speed, functionality, and connection to the
UNIX world. An I-structure board has also been designed and is being fabricated by Mo-
torola. The Monsoon interconnection network switching chips (PaRCs) and data link chips
(DLCs) have been designed and fabricated, and are undergoing testing. A 4-by-4 network
board has been designed by Motorola and is being fabricated.

In other work: Vinod Kathail has completed his Ph.D. thesis on optimal interpreters for the
lambda-calculus; we have continued our research on P-RISC, a synthesis of von Neumann
and dataflow architectures; we are close to having a stock hardware implementation of Id;
and, we are close to having a dataflow implementation of a parallel persistent language.

In addition to cooperation with Motorola, we continue to maintain strong and active contacts
with several other dataflow researchers outside MIT. Members of our group have participated
in the international committee that designed the new, standard, functional programming
language Haskell.

4.2 Personnel and Visitors

In January 1990, Greg Papadopoulos was appointed to the MIT faculty in the Department
of Electrical Engineering and Computer Science. He has been a member of our research staff

since August 188.

In December, Arthur Altman of Texas Instruments completed a year as a visitor in our
group, and has transferred to Steve Ward's Computer Architecture Group.

Rudiger Kreuter from Siemens, Germany, spent the Fall of 1990 as a visitor in our group. In
addition to learning about Id and dataflow, he studied the implementation of 3D graphics
in Id.

As usual, we have had a steady stream of international scholars for short visits and talks.

4.3 MIT-Motorola Collaboration on Id and Monsoon

Through the concerted efforts of Albert Vezza, Associate Director of LCS, and Jerzy Skibin-
ski, Vice President of Motorola's Microcomputer Division, a joint Research Agreement with
Motorola's Computer Division of Tempe, Arizona was formalized in August 1989, although
cooperation had been ongoing for seven months in anticipation of the signing.

The joint effort will result in at least three 16-node Monsoon research prototypes and at least
sixteen 2-node versions. The division of labor between MIT and Motorola is as follows: MIT
is responsible for the overall system, logic and chip designs, chip fabrication, a novel special
tool for generating microcode from opcode specifications, the Id language, and compiler
design and development. Motorola is responsible for all board-level, enclosure, supporting
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hardware infrastructure and I-structure logic design, development, and manufacturing. On
the software ide, Motorola is responsible for the Monasm assembler, dynamic linking loader,
command line interpreter user interface, all host level software, and debugging tools including
a Monsoon simulator.

Motorola's project is managed by Jim Richie. Their hardware work is done at their facility
in Arizona, while their software work is done mostly in Cambridge at the new Motorola
Cambridge Research Center (MCRC), which they have established as part of this project.
The immediate focus of MCRC, which is in the Kendall Square office complex next to LCS,
is close cooperation with MIT in the research and development of software for Monsoon. In
the long run, MCRC is expected to take its place alongside the many fine basic research
labs in the vicinity of MIT. The first employee of MCRC was Ken Traub, who completed his
Ph.D. in our group in 1988. Ken was the original architect and builder of our Id compiler.
As a member of MCRC, Ken is playing a leading role as overall architect of the Monsoon
software system.

During the year, we have held numerous review and planning meetings with Motorola:

" August 1, 1989: Review meeting at MIT.

" September 27-28, 1989: Software and contracts meeting at MIT.

" October 19, 1989: Review meeting at MIT.

* December 7, 1989: Monsoon technical discussion meeting at MIT.

" January 25-27, 1990: Monsoon hardware and software progress review meeting at
Motorola, Tempe, AZ.

" March 29-30, 1990: Review meeting at MIT.

" June 25, 1990: Monsoon hardware and software progress review meeting at Motorola,
Tempe, AZ.

We are happy to report that all critical milestones to date have been met. We expect that
the first 2-node prototype will be ",;,tilable during the third quarter of 1990, and the first
16-node prototype during the second quarter of 1991.

4.4 Other External Collaborations

Our work on Id and Monsoon has led to collaUorative efforts with many research groups
outsil MIT.

Upon leaving MIT after finishing his Ph.D. thesis, Bob lannucci has started the Empire
Project at IBM Research, whose goal is to build a hybrid dataflow-von Neumann machine
similar to the one he proposed and studied here in his thesis. We also cont>'ue to collaborate
with K. Ekanadharn of IBM Research, who is leading the effort to target our Id compiler for

42



Computation Structures

that machine. During the summer of 1989, Shail Aditya worked at IBM Research on their
Id compiler.

At Sandia, a group of researchers led by Gerald Grafe is building the Epsilon dataflow
machine which is similar to Monsoon in many respects. Jamey Hoch of Sandia is working on
retargeting our Id compiler for Epsilon. In addition, they will be using our PaRC network
switching chip in the interconnection network for their multiprocessor. Ken Steele has just
left MIT to join the group at Sandia. We have participated in several meetings to discuss
collaboration with the Sandia project:

* July 31, 1989: Sandia-DARPA meeting in Washington D.C.

* March 11-13, 1990: Cooperation meeting at Sandia, Albuquerque, NM.

Karl Ottenstein of Los Alamos and Bob Ballance of the University of New Mexico are working
on a compiler for FORTRAN on Monsoon; they plan to use the backend of our Id compiler.
Similarly, Keshav Pingali of Cornell is also investigating the implementation of imperative
languages on a dataflow machine-he, too, plans to use the backend of our Id compiler in
order to run his codes on Monsoon.

In a separate, but related activity, Arvind, Rishiyur Nikhil, and Jonathan Young were mem-
bers of the design team for Haskell, the new, nonstrict functional programming language.
The team included about 15 prominent researchers in functional programming from the U.S.
and Europe. The report on Haskell was published in April 1990. It is hoped that the interna-
tional research community will adopt this language as the standard for nonstrict functional
languages.

On November 1-3, 1989, we held a Dataflow Workshop here at MIT. In addition to re-
searchers from all the above groups, participants included recent graduates from our group,
and researchers from Yale, Manchester University, Tera Computers, Rice University, Oregon
Graduate Institute, Glasgow University, Motorola, and Hewlett Packard Labs.

On April 26-27, 1990 we held a Software Cooperation Meeting here at MIT, again attended
by researchers from most of the above groups. The focus was on discussing how each of us
could structure our work to maximize sharing, since many of us are interested in targeting
other languages to Monsoon and in targeting Id to other machines.

One of the outcomes of the Software Cooperation Meeting was a consensus among our guests
that we needed to run a workshop dedicated to furthering the understanding of the internal
structure of the Id compiler. This workshop has been scheduled for June 28-29, 1990 at
MIT.

On February 2, 1990, we held an internal (MIT) workshop on multithreaded architectures
with participants from our group and the groups led by Anant Agarwal, Steve Ward, Bill
Dally, Tom Knight, as well as Bert Halstead from DEC Cambridge Research Center. The
intent was to get a better understanding of each others' work, since all are exploring different
kinds of multithreaded architectures.

As usual, on July 24-28, 1989, the summer dataflow course (6.83s), was taught here at MIT
by Arvind and Rishiyur Nikhil. The course was attended by approximately 20 external
researchers.
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Also, in November 1989, Arvind and Rishiyur Nikhil taught a one-day tutorial on Id at the

Supercomputing '89 Conference in Reno, Nevada.

4.5 Id: General Topics

4.5.1 Types and Incremental Type-checking

Continuing his work on the incremental type inference system for Id, Shail Aditya devel-

oped an abstract model for incremental property maintenance and applied it to show the

correctness of the incremental type inference system developed for Id.

Incremental programming environments, such as Lisp, aim at providing the user the flexibil-

ity to write a sequence of definitions constituting the program, one by one and in arbitrary

order, resolving global references to other definitions dynamically. They allow editing and

testing parts of an incomplete program or debug those parts that are incorrect, without wor-

rying about the status of the rest of the program. However, the Hindley/Milner static type

inference system [227][84] followed in Id does not naturally lend itself to incremental compi-

lation. Nikhil in [230] discussed the issues involved and outlined a high level mechanism to

do it.

Following Nikhil's proposal, Shail Aditya devised an abstract scheme to adapt the Hind-

ley/Milner type inference system for incremental compilation. Subtle incremental interac-

tions were discovered between the types of a given set of definitions and their partitioning

into strongly connected components (SCC), definitions that are mutually recursive with

each other. Development of the necessary theoretical framework guided modifications in the

scheme to handle polymorphic and mutually recursive definitions correctly. Essentially, the

present scheme consists of maintaining an upper and a lower type bound for each top level

identifier along with its current SCC. Inconsistencies arising due to the declared type falling

out of the expected range, or because of a change in its SCC, are detected and the affected

definitions are flagged for recompilation. The goal is to show an exact correspondence be-

tween the types inferred in the incremental scheme with those inferred when a complete and

correct program is given, while at the same time performing minimal recompilation work

due to an incremental change in the program. Tne detailed proofs of the correspondence are

due to appear in Shail Aditya's forthcoming master's thesis. Future work in this direction

will be to optimize the space and time requirements of the incremental bookkeeping done by

the compiler.

4.5.2 Managers

Paul Barth and Rishiyur Nikhil continued their work on managers. Managers add non-

determinism to Id, an important property for state-sensitive computation, as required by

operating systems, databases, and I/O. Although nondeterminism is a powerful feature, it

introduces a new class of programming errors: irreproducible results. We are addressing this
at the language level by encapsulating managers in abstract type definitions. A manager is

an abstract type, consisting of an updatable state and a set of operations that, access and

update the state. Each operation computes a new state from the old state. Mutual exclusion
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is provided for the state so that concurrent operations do not interfere. This encapsulation
allows state invariants to be proved by proving them for each operation.

Several challenging efficiency concerns are now being addressed. For space efficiency, man-
agers with a complex state should mutate the state rather than copy it. For parallelism, such
mar.agers should provie fine-grained mutual exclusion, so that independent operations can
proceed concurrently. These concerns raise syntactic and semantic issues in the design and
implementation of managers. A new syntax has been proposed that addresses these issues
while maintaining a clean abstraction.

Manager applications have been written for graph algorithms, sorting, memory management,
union-find, and parallel priority queues. The traveling salesman problem was coded using a
simulated annealing algorithm, using managers for both path mutation and random number
generation. A detailed study of potential parallelism and synchronization bottlenecks was
performed on several variations of the algorithm.

4.5.3 Sequentialized Code Execution

We are currently experimenting with writing resource managers and operating systems in
Id. These kinds of programs, which make use of imperative side-effects, must have explicit
sequentialization of reads and writes.

James Hicks has extended the Id language and compiler for sequential constructs. The
new syntax sequentializes the execution of groups of bindings in let blocks or loops. To
sequentialize a group of bindings, use '&' instead of ';' to separate the bindings, as shown in
this example:

{ xO = eO;
xl = el

& x2 = e2;

x3 = e3

in
e4 ]

This ensures that the evaluation of e2 and e3 does not begin until all computation has ceased
in the previous two bindings. Note, however, that e0 and el may execute in parallel, and
that e2 and e3 may execute in parallel-sequentialization is only inserted between binding
groups separated by &'.

Parentheses may be used to group bindings and enforce more arbitrary synchronization
graphs. Here is an example:

{ xO = eO;

( xl = 1&
x2 = e2 )

in e3 }

In this example, eO may execute in parallel-with el and e2, but e2 may not begin execution
until expression el terminates.
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4.5.4 Formalization of Id's Operational Semantics

Zena Ariola and Arvind have continued their work on giving precise operational semantics for
Id. The approach consists of translating Id into a simpler and smaller kernel language, and
giving semantics of the kernel language in terms of an Abstract Reduction System (ARS).
In order to prove the correctness of compiler optimizations, a notion of program equality is
needed. Such a notion is easier to define for an ARS than an interpreter. P-TAC, an earlier
attempt to define such a language, and ARS were reported last year [13].

P-TAC was a simple and a low level language that allowed us to captdre most aspects
of the current implementation of Id on the dataflow machines. However, it was so far
from the source language that the translation procedure (from Id to P-TAC) became a
serious impediment in understanding the operational semantics of Id. Even though it allowed
many program optimizations to be described in terms of source-to-source P-TAC program
transformations, it ruled out certain other program optimizations because the information
to perform them was essentially lost in the translation process.

Kid, our current kernel language, is essentially a de-sugared version of Id, which is Id without
comprehensions, general union types and pattern matching, and nondeterministic features
such as managers. Both array and list comprehensions can be expressed in terms of other
Id features such as loops and "open" lists. Though such a translation is not simple, it can
be understood in its own right. Similar remarks apply to complex ,attern matching. The
stage at which type-checking should be performed is still an open question. Given the type
definitions, type checking can be done at the Kid level though it may be profitable to do so
at an earlier stage.

An ARS for Kid, which includes nested function definitions and loops, has been defined.
Many loop optimizations and partial evaluation have been expressed as Kid source-to-source
transformations. The work on formalizing the printable output and termination of Id pro-
grams is underway.

4.6 Id: Compiler and Run-time Systems for Monsoon

4.6.1 New Compilation Schemas for Dealing With Frames

James Hicks implemented the code generator for the bounded loop schema for the Monsoon
backend. The TTDA bounded loop schema is much different from the Monsoon bounded loop
schema because each iteration executes in a different context on Monsoon, while in TTDA
only the iteration number within a context changed. This necessitates a change in the D
operator that routes tokens from one iteration to the context, or activation frame, of the next
iteration. Another change is that the synchronization that allows only k iterations to execute
at once must be performed using locks and two-phase transactions-this synchronization was
performed with bit-vectors and special instructions in Gita.

The new bounded loop schema consists of three parts: setup, iteration, and cleanup. The
setup portion consists of a 1-bounded, or sequential, loop that allocates a ring of activation
frames and fills in the loop constants in each frame. The iteration portion consists of the
actual loop body plus the glue necessary for synchronization and to route tokens to the
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next iteration or to the outputs of the loop. The cleanup portion of the loop clears and
deallocates each iteration context. We have taken much care so that the setup, iteration,
and cleanup portions of the loop may be overlapped to reduce the latency incurred by loops
that execute few iterations. The setup portion allows the iterations to begin as soon as it
has one activation frame setup. When the loop predicate evaluates to false, the cleanup
portion of the code is triggered with the continuation of the next context in the ring, which
is guaranteed to be inactive at that point. The cleanup code starts with that context, and
continues around the ring with the proper synchronization to ensure that it does not overrun
the loop body.

4.6.2 Staging the Instruction Set Development for Monsoon

The macroinstruction set of Monsoon is a "soft" interface, such that an opcode is succcssively
decoded through the pipeline by downloadable lookup tables. The decode tables are set up
by a host processor whenever Monsoon is cold-booted. In Monsoon, an opcode encodes
the effective address mode, the matching mode (e.g., join, constant, imperative), the ALU
operation, and the number and disposition of result tokens. For example, the double precision
floating point subtract operation FSUB consumes 32 opcodes for all of its variants of one vs.
two outputs, constant vs. dyadic matching, etc.

The software Monsoon interpreter, MINT, is also indirectly driven by the decode tables. A
preprocessing program, MUD, takes the decode tables as input and, for each opcode, produces
a C (originally Lisp) subroutine which is later compiled and linked into MINT.

In order to manage the "bring-up" and validation of the compiler, the software which gener-
ates the decode tables and MINT, we have partitioned the instruction set into three subsets
to be developed in stages. The first set, ISO, has approximately 60 opcodes (out of a possible
2048) and represents a very minimal instruction set. ISO supports frame and I-structure al-
location, but no deallocation and only single deferred readers. Exceptions are not supported,
nor is the run-time type system (Id is statically typed).

The next stage, IS1, brings the total to a few hundred opcodes and is capable of supporting
the entire Id language, including closures, accumulators, managers, storage reclamation, and
multiple deferred reads against I-structures.

The final stage, IS2, encompasses the whole instruction set, including experimental exten-
sions for temporary registers and threading. As of June 1990, the ISO set has been certified
by a series of tests on our gate-level simulator of a Monsoon processing element, and an
ISO version of the compiler and MINT has executed a simple successive over-relaxation 2D
wavefront problem.

4.6.3 New Backend for Monsoon

This past year Andrew Shaw has implemented a new backend for the ID compiler to trans-
form ID program graphs into Monsoon machine language. Prior to this, we had been gen-
erating code for the Monsoon wire-wrap prototype using an interim backend that was a
modification of the original TTDA (Tagged Token Dataflow Architecture) backend. The
new backend uses the same data structures as the middle end of the compiler, and several
new optimizations have been implemented, along with the standard peephole optimizations
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that were in place with the old TTDA backend. For example, the calling convention con-
strains the entry points of procedures to lie in consecutive address locations; one of the new
modules can relax the conservative selection of these instructions. Since the Monsoon archi-
tecture has some assembly constraints on the layout of machine code, new algorithms were
designed to enforce these constraints upon the final output code. For example, two-output
instructions are constrained to have one of their destination instructions in the following in-
struction slot; a new bipartite-matching algorithm was implemented to find a near-optimum
selection of successor-constrained instructions.

In addition, an interim loader was implemented to interface with the new Monsoon Inter-
preter, since the full loader has not yet been implemented.

4.6.4 Compiler-directed Storage Reclamation for Id

We have been experimenting with structure-storage management over the past year. Informal
studies have shown that functional languages typically "cons" at four times the rate of Lisp
programs. This high rate of storage allocation means that functional programs have a great
dependency on garbage collection. Unfortunately, garbage collection can be very expensive,
especially on a parallel machine.

We have introduced a pragma, @Release, into Id to annotate structures that are temporary
and that should be deallocated. When the Id compiler sees an @Release annotation on a
structure, it inserts code to deallocate the structure upon termination of the nearest enclosing
conditional branch, procedure body, or loop iteration.

There is one further optimization the compiler can perform with GReleases. If a structure
is allocated in a loop, and deallocate,! in the same or next iteration, then the compiler can
lift the allocate and deallocate out of the loop to reduce the overhead of calls to the storage
manager. Outside the loop, k copies of the structure will be allocated, where k is the loop
bound. These will be used by the iterations of the loop. After the loop terminates, all k
structures will be deallocated.

The QRelease pragma has been used extensively by Olaf Lubeck in his Id implementations
of the Gamteb photon transport benchmark and the Particle-in-Cell (PIG) code. In October
1989, Olaf Lubeck, James Hicks and Paul Johnson got Gamteb to run on the Monsoon
prototype. This version of Gamteb was annotated so that it did not leak any storage-all
structures that became garbage were deallocated. The largest problem run on the prototype
started with 40,000 particles. It allocated 300,000 9-tuples, 200,000 3-tuples, and 270,000
activation frames of size 512. When it completed, only 616 words of storage were still
allocated-and that contained the answer. This is quite impressive considering that the
prototype only has 128K words of memory, and only half of that is used for the heap. This
work has shown that explicit structure-storage management is useful; it allows us to run
prograin: that could not be run otherwise.

James Hicks is working on compiler analysis for the verification and automatic insertion of
@Releases in his Ph.D. research. The goal of this work is to have the compiler analyze
programs to determine the lifetime of structures, and to insert code to deallocate struc-
tures that are no longer needed. The compiler performs lifetime analysis by using abstract
interpretation-it interprets the program over an abstracted value domain at compile time
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in order to determine which expressions in the program allocate structures, and where those
structures may be used.

In scientific codes, which tend to have very regular control and data flow, most (if not all)
of the structures that become garbage should be detected and deallocated by the compiler.
Hicks has performed some experiments with simple program analyzers that support this
belief. His analyzer detected 23 of the 25 QReleases inserted into Gamteb by Lubeck. The
analyzer also was run on Simple; in this case the compiler inserted deallocates that at run
time deallocated 85% of the garbage created by four iterations of Simple on a 10 by 10 grid.
By the end of fall 1990, the compiler should be able to insert code to deallocate all of the
garbage created by this program.

4.6.5 Run-time Systems for Id

Jonathan Young has led a major effort on developing the Id Run-time System (RTS). The
RTS is designed to be a flexible interface to the low level primitives needed to execute Id
programs. The RTS is composed of three main parts: the allocation and deallocation of
contexts, both fixed- and variable-size, for procedure invocations; the allocation and deallo-
cation of aggregates for data structures; and the management of input from and output to
the outside world. Most of our work this year has focused on the first two parts.

As a stopgap measure until we have a simulator capable of executing SVC trap instructions,
we have coded primitive heap and context allocators for the new Monsoon machine which
maintain two pointers to the beginning and end of the heap. Since they do not reuse
storage, when the pointers cross, the machine dies. These allocators are generated inline by
the compiler, and have allowed the rest of the software development to proceed.

We expect that as IS1 (instruction set level 1, including SVC instructions) becomes op-
erational on the simulator, we will be able to test and debug the full functionality of the
two-phase operations and the exception mechanism. Once this happens, the Id RTS can
begin to execute via SVC instructions, although most of the RTS handlers will simply make
a procedure call at this point. When registers are finally added to the simulator (IS2), we
expect that the RTS will become much more efficient.

There are several problems to be addressed in order to manage storage efficiently on a
Monsoon multiprocessor. In particular, we must avoid network traffic-most of the manager
code must be completely local. We also wish to ensure that the critical sections are short
and the reuse of memory is as high as possible.

On the new Monsoon machine, each processor will allocate contexts locally, and using the
exception mechanism, each thread must be able to allocate a context independent of the
other threads in the pipeline. We have designed and implemented (but not debugged) a
scheme which, on average, achieves this behavior by caching a small number (16) of contexts
with each thread while linking the rest into a processor-global context free list.

Under this scheme, each allocation (and deallocation) of fixed-sized contexts will take ap-
proximately six instructions (exception, load cache pointer, return fetched context to caller,
increment pointer, and store pointer) normally and 20 instructions for the exceptional case
that the free (or empty) list has over- or underflowed. Since this happens statically once
every 16 operations, the amortized cost averages out to no more than seven instructions.
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On the new architecture, we aim to solve several new problems when allocating objects from
the global heap. First, the heap will be interleaved across multiple nodes in the system.
While no work is needed to achieve this interleaving, the heap manager will need to create
pointers which take full advantage of the hardware interleaving mechanism.

Second, multiple processors will be handling multiple simultaneous heap requests. Even
though the heap is remote, we desire to handle the majority of all requests locally. This
requires some PE-local heap data structures. Finally, we wish to avoid interference between
different threads executing in parallel on the same PE.

The heap manager on the Monsoon multiprocessor is a hybrid of two schemes. Each processor
will run a local allocator, a version of quick-fit which utilizes the assumption that if an object
is deallocated, it is likely that another object of the same size will be allocated. When the
local allocator runs out of memory, however, it will ask the global allocator for more storage,
pre-allocating a large block of memory for future requests. While allocating storage on the
global heap does require network traffic, this should be tolerable because it is so infrequent.

Arun Iyengar has also become actively involved in designing the Id storage managers.

4.7 Applications

Paul Barth and Stephen Brobst implemented a number of approaches to parallel simulated
annealing for the traveling salesman problem. Manager extensions to the Id programming
language were used to facilitate the implementation of critical sections while performing
update-in-place operations on the adjacency matrix of cities in the algorithm. A number of
paradigms for the use of managers in implementing the algorithm were explored: Compare
and Swap, Canonical Ordering, Master Lock, and Locking with Back-Off. It was found
that fine-grained parallelism was exposed very naturally in the model of execution provided
by dataflow. However, it was found that there is significant coarse-grain sensitivity within
the program to the particular algorithm implemented for managing critical sections. It was
important to not over-serialize execution of loops corresponding to different temperatures in
the simulated annealing algorithm. However, it was also critical to consider the contention
resulting from too many parallel loop iterations.

This contention resulted from two sources. One source was the contention for the current seed
value of the random number generator. This problem was addressed by initiating multiple,
parallel random number generators. The other source of contention was on the cities to be
swapped. In general, to swap two cities, it is required to grab locks on six cities (the two
to be swapped as well as the two neighbors for each city). The methods of managing this
locking had a large impact on performance. As expected, any use of global locks introduced
a major synchronization bottleneck for large instances of the problem. By optimizing the
"fast path" of execution through the locking primitives, we were able to reduce, but by no
means eliminate, the impact upon the critical path of our computation.

Amin Salaam and Rishiyur Nikhil have been studying an implementation of the Viterbi
Search in Id. Viterbi Search is a key component of speech recognition systems. The inputs
to the search are an Acoustic-Phonetic network (APnet) and a dictionary. The APNet is a
graph generated by an earlier phase that performs signal processing on the acoustic signal
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of the speech utterance. Each arc in the graph represents a time interval in the utterance,
and is labeled by a list of probabilities, indicating how well the signal in that time interval
matched each of all possible phonemes. The dictionary is also a graph structured around
words. Each word is represented by a sequence of arcs corresponding to phonemes, and
words that can legally appear in sequence are also connected by arcs. Dictionary arcs are
also labeled with probabilities indicating possible omission of insertion in an actual utterance.
The Viterbi Search algorithm matches paths in the APnet to paths in the dictionary, finally
emitting the "most likely" sequence of words in the utterance. Because of this complex graph
structure, the algorithm has not been effectively parallelized to date. We have been studying
existing code (in C and Scheme) for this algorithm since March 1990 in order to extract
the fundamental aspects of the algorithm. We plan to produce a parallel implementation
in Id and to run it on Monsoon. We expect that this will shed much light on dataflow
implementations of graph algorithms in general.

Other applications written by Rishiyur Nikhil and Arvind in Id include: a simulator for a very
abstract model of an Explicit Token Store (ETS) dataflow machine (of which Monsoon is a
concrete example), and various versions of LU-decomposition for dense and sparse matrices.

4.8 Id World, the Id Programming Environment

Development of Id World, the Id programming and experimentation environment, continues
with a focus on advances which benefit both the old TTDA/Gita system and the software
system which will support Monsoon. Paul Johnson has worked on improvements in Id World
on UNIX worKstations and software system construction tools. Id Mode for Gnu Emacs pro-
vides source code indentation and compilation of Id programs. With the assistance of Hicks,
simulator statistics graphs and overlays of multiple graphs are available under the X Window
System. Id World Version 4.3, which was released in April, provides these improvements and
Id compiler pragmas for explicit structure storage management. As of Version 4.1, Id World
runs on UNIX workstations under Common Lisp. Version 4.3 has been tested under Allegro
Common Lisp and Lucid Common Lisp running on Mips, Motorola, and Sun workstations.
We were unsuccessful in running Id World under Austin-Kyoto Common Lisp (AKCL) due
to deficiencies in language support for error handling. Improvements in software system
construction tools include: handling file system specifics-translation of program filenames
and logical pathname support in the Defprogram facility, startup initializations and banner
customization for Lucid and Allegro disk images, consistent versions of internal software-
generation, and use of generic patch files for our development systems.

4.9 Monsoon Hardware Development

4.9.1 Monsoon Wire-wrap Prototype Processing Element

The Id compiler now produces Monsoon object code for all of the Id language. The only
restriction to running an Id program on the prototype is the size of memory-the prototype
has only 128K words of data memory, of which half is used for I-structure storage and half
for activation frame memory.
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We have a run-time system, written in Id and Monsoon assembly code by Young and Hicks,
that manages the allocation and deallocation of activation frames and heap storage on the
Monsoon processor. Activation frames are managed on a free list, and heap storage is
managed by either the buddy or first-fit system. Implementation of the storage managers
has been very difficult because concurrent calls to the storage manager can be interleaved
on an instruction-by-instruction basis.

The prototype is currently used to measure performance and instruction mixes of applications
under the Monsoon instruction set architecture with the run-time system described above.
These measurements have shown that Id can be run efficiently on Monsoon. The dynamic
instruction mixes collected while running Id applications on Monsoon have shown that the
architecture is well matched to the language, and not too much overhead is introduced to
support instruction-level parallelism. However, some of the architectural restrictions imposed
by the implementation of the wire-wrap processor, such as the restriction of one explicit
destination per instruction and 10-bit offsets for addressing of frame locations, have caused
excessive difficulty in compilation and have introduced excessive overhead in the object code.
The processor has been redesigned to mitigate these problems.

These performance measurements have also shown that better algorithms must be used
for storage management so that concurrent invocations of the storage manager will not
cause excessive sequentialization of the program. This sequentialization will be magnified on
multiple-processor Monsoon systems unless better algorithms are used. Young and Armando
Fox have designed and implemented a storage manager that uses multiple local fr-e lists and
local heaps to allow concurrent access to the heap.

4.9.2 The Monsoon Processing Element (Second Generation)

We have made significant progress in the design and verification of a second generation
Monsoon processing element (PE). This board-level design was transferred to the Motorola
Microcomputer Division, where it was successfully layed-out and routed. It is now in the
process of being manufactured. We also designed and fabricated two application-specific
integrated circuits (ASICs): a byte-slice of the datapath and tag/pointer ALU. Greg Pa-
padopoulos was responsible for the overall PE and ASIC architectures. Jack Costanza and
Ralph Tiberio executed the detailed designs and simulations.

The original Monsoon wire-wrap prototype processor was made operational in 1988, execut-
ing its first compiled Id program in October of that year. The new PE is largely compatible
with the original prototype, employing an eight-stage pipeline, 64-bit datapaths (plus eight
bits of type), and 32-bit instructions. The new PE differs in several important respects:

* Interprocessor Network: The first prototype could operate only as a uniprocessor
because it lacked an interprocessor network. The new PE integrates the network into
the processor by employing an on board PaRC and Datalink chips, as well as input
and output FIFO buffers.

@ VME Interface: The new PE is hosted on a 9U form-factor VME bus. The VME
bus interface implements diagncstic functions (access to processor scan state, single
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stepping, breakpointing), VME and PE interrupts, and high speed I/O through a dual

ported frame store.

* Exception Handlers: The new PE now provides a way to efficiently transfer control

to state-preserving exception handlers. Exceptions can be induced unconditionally
(an SVC), elicited by a standard ALU conditions (like overflow) or by operand type

inconsistencies. In fact, we will use the SVC mechanism to provide dynamic linking to
the resource management system, including frame and heap allocation/deallocation.

* Temporary Registers: The new PE permits state to be communicated between
an instruction and its successor through a small set of temporary registers associated
with the first stage of the ALU. There are eights sets of temporaries with three 72-
bit registers per set, one set for each "logical thread" being interleaved by the eight

stage pipeline. It is expected that temporaries will measurably improve the dynamic

efficiency of compiled code.

Experience generating code for the wire-wrap prototype has suggested a number of minor
enhancements to the processor datapath. For example, it is now possible to use the current
tag as one of the arguments to the ALU-optimizing procedure linkage and case statements.

We have also attempted to make the design more manufacturable by providing complete scan

coverage of all internal processor state and parity protection for instruction memory, frame
store, and the token queues. Figure 4.1 gives the block diagram of the processing element
datapath. The processor is designed to run on a 100 nanosecond cycle time, yielding a sus-
tained processing rate of 10 million tokens per second. Compiled code presently exhibits
a dynamic average of 1.4 tokens per instruction. Thus, the processor pipe should deliver
approximately 8 million instructions per second, any fraction of which may be floating point
operations. The first set of processors will be equipped with 256K words (32 bits) of in-

struction memory, 256K words (72 bits) of frame store memory and 64K words (144 bits)

of token queue memory. Both the instruction and frame store memories are upgradable to

1MWord.

The processing element detailed design was captured and extensively simulated on our

Apollo/Mentor Graphics design systems. Both arrays were implemented in LSI Logic's 10K
series of 1.5 micron channeless arrays, and packaged in 144 pin fine-pitch quad flat packs.
The DATAPATH array comprises a little over 10,000 gates and implements a 9-bit slice of
the datapath pipeline registers, temporaries, breakpoint registers, form token multiplexors,

VME interface, and all static RAM parity generation and check. Each processor uses eight
DATAPATH options. The PIu gate array is an ALU function unit specialized for tag and
pointer manipulation. The PIU array comprises approximately 6,500 gates. Both arrays
have been successfully prototyped in volumes sufficient for an initial build of five processing
elements.

Design verification emphasized full-board gate-level simulation and timing verification, in-

cluding all of the gate arrays. Simulation tests generally took the form of small handcoded
dataflow graphs designed to test various aspects of the instruction processing mechanism.

One or more initial tokens would be introduced into the pipeline, and then the simulation
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was allowed to "free-run" using the processing of the tokens themselves to generate the var-
ious test vectors. The simulated design was transferred to Motorola in the Fall of 1989. A
12-layer surface-mount circuit board was successfully routed by Motorola in February 1990,
and assembly began on the first processor prototypes in May 1990. Simulation and verifica-
tion of the processor still remains an area of intense activity. We have generated a set of code
fragments with reference timing traces to aid in the hardware debugging and certification
process.

4.9.3 The Interconnection Network for Monsoon

Andy Boughton, Christopher Joerg, Juan Ferrera, and Robert Lustberg have continued
development of the network for Monsoon. This network is packet-switched and supports
a bandwidth of 800 MBits/sec/port. The two primary components of the network are the
Packet-switched Routing Chip (PaRC) and the Data Link Chip (DLC). These components
were discussed in some detail in last year's progress report.

PaRC is a CMOS gate array designed by Chris Joerg that forms the basis of the Monsoon
network. PaRC has 4 input ports and 4 output ports, each of which is 16 bits wide and
has a maximum throughput of 800 MBits per second. Each input port has 4 buffers, each
of which can hold one packet. PaRC has a sophisticated buffering and scheduling strategy
which will allow an output port to transmit a packet whenever possible. PaRC uses a
CRC code to detect errors on received packets. PaRC also allows a processor to get a fast
acknowledgment that its message has been received. The mechanism for this is able to
provide the acknowledgment without further burdening the network.

Chris Joerg has finished the design of PaRC and the generation of a complete set of test
vectors. PaRC has 33,000 used gates and is capable of operating at 50 MHz. It has a low
latency (100ns in l'ght traffic), while making effective use of its bandwidth (90% utilization
in heavy trailic). The set of test vectors allow., the vendor to check for defects on newly
fabricated chips.

PaRC has been fabricated in LSI Logic's 1.5 micron compacted array series, and working
chips have been received. One of these chips has been placed on a simple test fixture
constructed by Juan Ferrera. This setup was used to verify the timing of selected output
signals.

The DLC is an ECL gate array that interfaces 16-bit wide PaRC ports to 4-bit wide inter-
board cables. Each DLC contains one data link transmitter and one data link receiver. Each
of the 4 bits of the interboard data path is differentially driven at 200 MBit/sec.

Andy Boughton has completed the design of DLC and the generation of a set of test vectors.
DLC has been fabricated in Motorola's Mosaic II ECL array series and working chips have
been received.

Juan Ferrera and Robert Lustberg have designed and constructed a test fixture for the DLC
chip. The fixture uses two DLCs to transmit test patterns over a 40' datalink cable. Tests
with this fixture indicate that DLCs can be used to reliably interconnect network boards in
different racks.

The first use of PaRC and DLC will be in the initial version of the Monsoon processor board.
These boards are currently under construction. Each of these boards uses one PaRC chip
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and one DLC chip. These boards will allow PaRC and DLC to be more thoroughly tested
in an operational environment.

Our industrial partner, Motorola, designed 4 input/4 output network boards using a PaRC
and 4 DLCs. These boards which should be available early in 1991, will be used in the
construction of 16-node Monsoon systems.

4.9.4 The I-structure Memory Board

Ken Steele completed his Master's thesis entitled Implementation of an I-Structure Memory
Controller in February 1990. The design was kept simple to reduce cost and design time.
In particular, the board does not perform local management )f deferred continuation lists.
Instead, the compiler allocates storage in the frame for one cell of a deferred list. When an
I-fetch instruction is executed against an empty I-structure location, the I-structure board
automatically responds with a token whose continuation is a small modification of the normal
rnturn continuation. The effect c: this modified continuation is to thread the deferred list
through all the frames from which the deferred I-fetches were issued.

Motorola Microcomputer Division in Tempe, Arizona is building an I-structure controller
based on Steele's thesis design. Fabrication of the hardware is currently underway.

4.9.5 Caching for Monsoon

This past year, Derek Chiou has been investigating the possibility of caching on Mon.,oon.
The prototype Monsoon uses stati, RAM for all of its memory at the present time. It would
be desirable to use slower, cheaper dynamic RAM for future iterations of the processor. If
the processor is to run at competitive speeds, using slower RAMs will require caching of some
sort. Software has been developed that will produce an instruction trace from either MINT
or the Monsoon prototype. Chiou also wrote a cache simulator which takes an instruction
trace and collects cache data. Most of the serious data collection has been done for very small
caches-generally around 32 words of fully associative cache. Results have been reasonably
promising, with hit rates ranging from 33% to 84%. These results are very preliminary,
however.

4.9.6 Completion of MINT, a Monsoon Simulator

Last year we reported the construction of MINT (Monsoon Interpreter), a simulator of the
Monsoon instruction set. MINT has a variety of uses: iebugging microcode for Monsoon,
development and testing of MonFjon object code generators in the compiler, gathering of
more detailed statistics than Monsoon itself is capable of gathering, etc.

This yeafr, Andrew Shaw has extended MINT to simulate multiple Monsoon processor execa-
tion. The extension has a network simulation that models latency. but not contention. It is
expected that contention will not be a significant problem as the peilormance of the Monsoon
network is very high, and the references will be well distributed, as data is iterleaved across
processors. A multiple-processor run time system was implemented to distribute processes
and to handle resource manager requests. Several experiments were run that indicate that
Gita simulation was indeed an accurate predictor of performance in Monsoon. In addition,
the capacity of the network was deemed sufficient to handle processors' memory requests
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and that the limiting factor in parallel execution is likely to be serialization induced by re-
quests to the resource manager. In addition to multiple-processor simulation, an I-structure
board simulation was added to MINT.

4.10 Other Activities

4.10.1 Optimal Interpreters for the Lambda-Calculus

Vinod Kathail completed his doctoral dissertation [1561 in which he developed a new inter-
preter for the A-calculus that is optimal in the theoretical sense defined by J.-J. L6vy [195],
and gave proofs of its correctness and optimality.

The interpreter is based on a new graph representation for A-expressions that permits sharing
of not only subexpressions but also contexts, i.e., parts of an expression that are not complete
subexpressions. This is in contrast to the commonly used representations of expressions
which permit sharing of only subexpressions.

The interpreter is presented as a graph reduction system along with a normalizing strategy
for applying the reduction rules. The set of rules includes a graph version of the fl-rule
of the A-calculus as well as certain other rules, some of which are similar to the rules for
handling environments in an environment-based interpreter for the A-calculus. Some of the
nice features of the interpreter are as follows: first, all the reduction rules are local constant-
time operations on graphs; second, the reduction strategy for applying the rules is quite
simple; and finally, the input to the interpreter as well as the output of the interpreter are
"clean" representations of A-terms. They do not contain various new types of nodes used by
the interpreter. A version of the interpreter has been implemented on Lisp Machines.

To prove the correctness of the interpreter, the thesis develops two calculi, called Af, calculus
and At calculus. At, calculus is essentially the term version of the graph reduction system
underlying the interpreter. At calculus is obtained from Af, calculus by removing certain
types of terms and reduction rules that are not very useful for terms. The thesis shows
the correspondence between the graph reduction system underlying the interpreter and Af,
calculus, as well as correspondence between the two calculii and De Bruijn notation [87].
Although Af calculus was motivated by the interpreter, it may be of general interest because
of the way it simulates changing of De Bruijn numbers.

The thesis also strengthens an earlier result of Barendregt, et al., that states that if A-
expressions are represented as trees, then there is no recursive (one-step) reduction strategy
that is optimal. The extension proved in the thesis provides some justification for the basic
assumption underlying the optimality criterion, i.e., the number of 1-contractions performed
in reducing an expression is a good measure of the cost of reducing the expression.

4.10.2 P-RISC

Madhu Sharma is investigating the design of a processor that is a concrete implementation of
the P-RISC architecture. Most multithreaded architectures incur a large context-switching
cost. The cost may be incurred either in hardware-when register space is provided for
a large number of contexts, or in time-when contexts have to be swapped in and out of
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processor register files. The proposed design virtually eliminates both elements of context-
switching cost. It caches contexts in multiple register sets in the processor, but manages
to mask the context swapping cost using an additional port to the register file and deep,
deterministic, instruction lookahead mechanism. The design is claimed to be only marginally
more expensive than commercial RISC processors such as the SPARC.

A detailed simulator for the architecture has been developed. Statistics gathered for small
handcoded programs run on the simulator indicate that the architecture does manage to
mask context-switching cost and performs well under low or high parallelism.

We are now developing compiling techniques for the architecture, with two approaches pur-
sued. The first is a dataflow-graph driven approach, wherein we start with a dataflow graph,
sequentialize threads of the computation to obtain larger threads (whenever there is no gain
in executing the threads in parallel), and arrive at a "control-flow graph", which is translated
into P-RISC code. The second approach is the conventional "control-based" approach and
will be used for compiling imperative languages.

4.10.3 Compiling Id for von Neumann Machines

Bradley Kuszmaul has been working on retargeting the Id compiler for stock hardware, such
as conventional UNIX workstations. Starting with the existing dataflow graphs produced
by the compiler, he translates these into parallel control-flow graphs based on the P-RISC
abstract machine model. The major effort is then in analysis and transformations on the
control-flow graph, including strictness analysis, subscript analysis, identification of threads,
transformations to lengthen threads and reduce synchronizations, and peephole optimiza-
tions. Finally, these graphs are used to generate object code in the T language (T is a
dialect of Scheme). The existing T compiler already has a very sophisticated code generator
for a variety of stock machines (including register allocation, closure optimization, etc).

We expect to release a version of Id World using this new compiler by June 30, 1990. This
implementation should substantially increase the availability of Id World to researchers who
may not have access to Lisp machines or Monsoon dataflow machines. It should shed light
on the differences in implementation requirements between nonstrict, lenient languages like
Id, and nonstrict, lazy languages like Miranda.

4.10.4 Parallel Persistent Languages

Michael Heytens and Rishiyur Nikhil have made significant progress in their project to design
and implement a parallel persistent language. The aim is to produce a system in which (a)
the the user can declare, create and manipulate objects of arbitrary structured types; and
(b) all such objects are automatically persistent. Such a system can be viewed as a synthesis
of programming languages and databases.

Because of the rich object structure of the language, and because the structure can change
significantly over time, high performance cannot be achieved using conventional database
methods (detailed planning of data layouts on disks and scheduling of disk activity). Our
approach is to use parallelism.

We have designed a kernel database language that is greatly inspired by Id, i.e., having
fine-grained, implicit parallelism. In addition, in update transactions, each field can only be
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redefined once, as in I-structures; this allows update transactions also to be run in parallel.

We have implemented a compiler that translates transactions into dataflow graphs and then

into P-RISC code that is augmented with manager calls for disk I/O. As in Id and Monsoon,
another objective is to mask disk latencies using parallelism.

We have designed a segmented, paged, distributed virtual heap for the persistent system.
Pages of the virtual heap reside in files in each processing element, and are fetched on
demand into page frames in each processing element. The protocols for page faults and
flushing on transaction-commit have been designed, and the filespace occupied depends only

on the heapspace in use (not the entire virtual heap address space). The files are partitioned
across processing elements and are partitioned by type, allowing fast traversals of collections
of objects of a given type. The files may also be indexed, allowing fast direct access to
individual objects.

A prototype is being implemented, consisting of an ensemble of P-RISC emulators running
on a network of Sun workstations. It is currently running a subset of the language, and
we expect to support the full language by June 30, 1990. After this, we plan extensive
evaluations, running numerous published and new benchmarks, and porting the system to a
real multicomputer with parallel disks.

4.10.5 Bachelor's Theses and UROP Projects

Armando Fox (supervised by Jonathan Young) investigated possibilities for more efficient
run-time storage managers. A number of traditional schemes were analyzed, with particular
attention to projected performance and synchronization requirements for a dataflow archi-
tecture. A prototype of a storage manager was implemented which addressed the problems
of global resource contention and long critical sections, and its performance was compared
to the existing first-fit manager. Although substantial improvements were observed in a
variety of cases, overhead associated with clearing out storage for reuse still accounted for a
significant fraction of the deallocation latency. Increasing the efficiency of this operation and
possibly implementing some sort of garbage collector remain topics for future investigation.

David Plass (supervised by Jonathan Young) implemented a parser generator which produces
LALR shift-reduce tables in the dataflow language Id, for use in an Id parser. The algorithm
employed avoids the creation of the LR(1) kernels by calculating LR(O) kernels and later adds
LALR lookahead information. In addition, a general purpose parser shell was implemented
which can be used in conjunction with output by a compiler to parse source language inputs.
This work will help in our effort to write the Id compiler in Id.

Alejandro Caro (supervised by Jonathan Young) designed and implemented a symbolic de-
bugger for the Id programming language on the Monsoon processor. The debugger allows
the user to trace function calls and returns, to examine local variable bindings and loop vari-
able bindings, and to examine the state of the machine in detail. Furthermore, the debugger
allows the user to invoke these functions at the source code level, relieving the user from
having to learn the intricacies of the processor and compilation schemes.

Glen Adams, (supervised by Greg Papadopoulos), extended the Lisp MINT simulator to
model I-structure memory. An I-structure module simulator is capable of handling I-store,
I-fetch, I-put, and I-take requests, as well as ordinary reads and writes. This was interfaced
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to the MINT system so that it is suitably initialized and driven by the queuing system. The
design is extensible to model multiple I-structure units.

Mike Flaster (supervised by Rishiyur Nikhil) implemented a compiler for a small, nonstrict
language that uses dependence analysis to convert a nonstrict program into a strict one.
First, the compiler performs conventional def-use analysis, as well as subscript analysis for
arrays in loops, using the Banerjee-Wolfe and GCD tests, augmented with some symbolic
subscript-expression reduction. Then, the compiler performs loop-splitting, loop-reversal,
loop-distribution, scalar expansion, induction-variable analysis, etc. to ensure that all de-
pendencies are forward dependencies. The program can now be run with the parallelism
that is best suited to the resources of a given machine.

UROP student Doug Stetson (supervised by Jonathan Young) implemented a compiler which
translates a small subset of C into an Id program graph, the intermediate language of the Id
compiler. The subset included assignments, conditionals and loops, but not procedure calls
or pointers. The sequential semantics of C was enforced by artificial dataflow edges.
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5.1 Introduction

The 1989-90 academic year saw the birth of the Computer Architecture Group, an inter-
laboratory conglomerate whose research projects and goals subsume those of several pre-
viously independent single-faculty groups. The CAG is still in its formative stages, and
continues several projects previously reported elsewhere (including those of the former Real
Time Systems Group and the Alewife project). Our goal over the next several years is
to combine gratuitously different research projects to yield a coherent overall approach to
architecture-related research.

Following sections report progress in several LCS projects which have continued in the new
GAG venue.

5.2 Alewife

Agarwal, Kranz, and others continued their work on the Alewife machine project. The goal of
the Alewife experiment is to demonstrate that a parallel computer system can be made both
scalable and easily programmable. Scalability will be achieved through an architecture that
allows the exploitation of locality. That is, for programs that display communication locality,
scalable machines can offer proportionally better performance with more processing nodes.
A program running on a parallel machine displays communication locality if the probability
of communication with various nodes decreases with physical distance. Programmability will
be achieved through automatic management of locality by a combination of hardware and
software mechanisms.

As the experimental vehicle for this research, we are designing and implementing the parallel
computer system, Alewife. Users will be able to write a large class of parallel applications on
this machine without worrying about partitioning and placement of data or processes, while
achieving speedups comparable to those available from carefully handcrafted programs.

The opposing goals of scalability and programmability are hard to achieve simultaneously.
In conventional shared memory machines, all memory accesses incur the same cost. Thus,
they can be programmed relatively easily, but bus or network bandwidth limitations hamper
their scalability. Conventional message-passing multicomputers scale because they allow the
exploitation of locality through the use of distributed local memory and direct networks, but
the user has to explicitly partition and place data and processes, which makes it hard to
program such machines. Perhaps it is this problem that prompted the following remark by
Ken Kennedy in Computing Research News: "Contemporary parallel machines are architec-
turally diverse and have reasonably primitive programming systems that expose the details
of the machine architecture to the user."

The Alewife machine has a distributed shared memory organization with a cost-effective,
mesh network. Such an architecture allows the exploitation of locality, and is scalable. In
our system, the hardware and software systems share the responsibility of enhancing locality
to reduce bandwidth demands on the network, resulting in a system that is also easy to

program.
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Automatic locality management in Alewife is achieved by reducing latency of memory re-
quests when possible, and by latency tolerance otherwise.

Several components in the Alewife system cooperate in automatic minimization of latency.
Hardware-managed distributed caches significantly reduce the frequency of remote commu-
nications by automatically copying frequently-used data locally. However, maintaining cache
coherence in scalable machines is a hard problem. We developed a novel method of enforc-
ing distributed cache coherence called LimitLESS directories (Limited directories Locally
Extended through Software Support). The LimitLESS directory works by maintaining a
constant (two to four) number of pointers to shared copies of data in hardware, while trap-
ping the processor when a directory overflow occurs and extending the specific directory
entry into local memory. This simple scheme performs as well as the unscalable full map
scheme, but its hardware overhead remains constant with machine size. The LimitLESS
directory works well because the fixed set of pointers suffices for the common case of limited
sharing, and because our processor's rapid context switching allows efficient trap handling
for the rare cases.

The software run-time system of Alewife allows process and data partitioning, placement, and
migration for improving locality. A new scheme, called lazy futures, partitions tasks at run-
time, maximizing locality without compromising parallelism. A distributed tree scheduler
dynamically assigns tasks to processors trying to balance the performance gains due to
locality with the need for load balancing. The compiler assists by clever data and process
decomposition and scheduling, and through hints to the run-time system.

When the system cannot obviate a remote memory request and is forced to incur the latency
of the communication network, the Alewife processors attempt to tolerate this latency by
rapidly scheduling a runnable process in place of the stalled task. Alewife can tolerate syn-
chronization latencies as well through the same context switching mechanism. We designed
a new processor architecture, called APRIL, that can rapidly switch between processes. (In
our first-round implementation the switch will take 11 cycles.). The fast switching is achieved
by caching a few (four in our implementation) process context frames on the processor to
eliminate the overhead of unloading and restoring the process registers.

To assess the extent to which scalability and programmability can be achieved through auto-
matic management of locality, we are building the Alewife machine and its software system
and implementing several large symbolic and numeric applications. Alewife's rich perfor-
mance instrumentation will provide an accurate evaluation of our ideas with real parallel
applications on the initial 64 node machine, and experimentally observed communication
locality profiles will also help us to forecast the extent to which such schemes scale to much
larger systems.

Some of the salient developments in the Alewife machine project over the last year are
outlined below.

5.2.1 The Alewife Machine Hardware Organization

The architecture of the Alewife machine has been defined and we obtained detailed perfor-
mance estimates for a variety of applications through simulations. Figure 5.1 depicts the
Alewife machine as a mesh connection of a set of processing nodes. (Figure 5.3 depicts the
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Figure 5.1: The Alewife Machine Hardware Organization

structure of the distributed LimitLESS directory.) Each Alewife node consists of a processor
called APRIL, a cache, a portion of globally-shared distributed memory, a cache-memory-
network controller, a floating-point coprocesso-, and the network switch. Our current pro-
posal is to build a modest 64-node (8 x 8) experimental system. Measurements from this
machine will indicate the scalability potential of our ideas for a future larger-scale effort
based on a three dimensional network called NuMesh (described in a later section).

5.2.2 ASIM: A Simulation System for Alewife

A simulator for the Alewife machine has been operational since June 1989. The simulator
accurately models the processor, cache and memory, and the interconnection network. A
compiler and run-time system are operational and produce code for the Alewife processor.
ASIM simulates roughly 10,000 processor instructions per second on our SPARCserver 330.

ASIM has recently been augmented with many new features such as a floating-point copro-
cessor, support for special processor mechanisms ircluding remote process invocation, and
full-empty bit synchronization with support for arrays of full-empty bit data. ASIM also
implements other directory coherence protocols 1 I network structures to enable architec-
tural comparisons. Several parallel applications hare been written, compiled, and run on the
ASIM simulator. The simulator has been heavily instrumented and yields a wide range of
useful statistics including parallelism profiles, communication locality histograms, cache and
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Figure 5.2: The Alewife Simulator System

network statistics, processor utilization, process length distributions, run lengths between
synchronizations, etc. These execution profiles provide feedback to the programmer and help
in parallel program optimization. The structure of ASIM is depicted in Figure 5.2.

5.2.3 Locality Management through Caches

We investigated the use of caches in providing efficient coherent shared memory. Caches
copy frequently-used data in a fast local memory and can obviate repeat requests to remote
memory. Furthermore, their operation is transparent to the programmer. David Chaiken has
designed the cache coherence protocol for the LimitLESS directory scheme. Figure 5.3 depicts
a LimitlESS directory node with two pointers implemented in hardware. The overflow
pointers for dattlm X are stored in the local chunk of main memory. When the overflow
pointers mnust be accessed the controller traps the p~rocessor, and the processor then proceeds
to ertulate a full-map protocol.

Chaiken and Kiyoshi estimated the l)erformance of the LimitLESS scheme through simula-
tions and showed that Lilit, ESS directories perform almost as well as the non-scalable full

map directories. For ex;tmiple, for weather forecasting code, Limitl,ESS was only about 6%
worse (with a 50 cycle processor overhead for software handling of a remote request that
overflowed the directory and trapped the processor) than the full map protocol. Perhaps
more itiportaitly, this scLeimle allows its to experiment with the required amount of hardware
siupprt for cache coherence.
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Figure 5.3: The LimitLESS Directory Scheme

5.2.4 The APRIL Processor

Processor architectures of the future must change to reflect the special needs of multipro-
cessors. Processors in multiprocessing environments must be able to tolerate long latencies
arising from synchronizations and remote memory operations that defy locality optimiza-
tions. Additionally, LimitLESS directories and other functionality emulated through trap
software require efficient trap handling. Lim, Kubiatowicz, and others have designed a new
processor architecture called APRIL that meets these requirements. APRIL is a multi-
threaded VLSI processor with high single-thread performance. A multithreaded processor
mitigates the negative effects of long communication and synchronization delays in multi-
processors by overlapping these delays with computation from other processes. High single
thread performance ensures reasonable behavior when the application lacks parallelism.

The left half of Figure 5.4 depicts the user-visible processor state comprising four sets of
general purpose registers, and four sets of Program Counter (PC) chains and Processor
State Registers (PSR). The PC chain represents the instruction addresses corresponding
to a thread, and the PSR holds various pieces of process-specific state. Each register set,
together with a single PC-chain and PSR, is conceptually grouped into a single entity called
a task frame. Four such task frames are implemented in the first version of APRIL. Task
switching happens in 11 cycles in this implementation. Only one task frame is active at a
given time and is designated by a current frame pointer (FP). All register accesses are made
to the active register set and instructions are fetched using the active PC-chain.

Kubiatowicz developed a simple memory reference based interface between the APRIL pro-
cessor and the Alewife cache/memory controller. Using a control word associated with each
memory reference, various types of synchronization or communication types are synthesized
by the conttroller. This interface allows a simple implementation of the processor and the
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controller by enabling graceful trapping into software for handling complicated rare condi-

tions for which dedicated hardware cannot be justified. The interface has been implemented
in the Alewife simulator.

The implementation of the APRIL processor explores a new form of collaboration between

industry and uniersity. We are modifying LSl Logic's SPARC processor to avoid dupli-
cating the engineering effort in designing components not directly relevant to our research.

Besides other obvious benefits such as industry support, this approach affords the oppor-
tunity to ride the industrial technology curve as new technologies evolve, and allows rapid
transfer of new ideas from university to industry, and the ability to impact evolving indus-
try standards. The implementation, called MIT-SPARCLE, is a joint effort with LSI Logic
and SUN Microsystems. LSI Logic's standard cell and gate array SPARCs allow high level
modifications of the processor. Currently our modifications have been incorporated into the
SPARC gate-array design at LSI and we are now moving into the design verification phase.

We also evaluated the performance of multithreaded processors in large scale multiprocessors
using an analytical model. For processor parameters derived from APRIL's SPARC-based
implementation, the study showed that multithreaded processors such as APRIL can achieve
over 80% efficiency with just three threads with a 10 cycle memory delay in a 3D mesh
network with base average latency of 55 cycles.

5.2.5 The Interconnection Network

The Alewife controller uses a simple message-based interface with the network. Various
forms of shared memory coherence models are maintained by the controller via messages to
other nodes. We plan to use the Caltech Mesh Routing Chips for our switch nodes in the two

dimensional 64 processor system. A much more aggressive three dimensional interconnect,
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called NuMesh, is being developed in the Computer Architecture Group in a collaborative
effort of Steve Ward, Tom Knight, Bill Dally, and Anant Agarwal. A future larger scale
implementation of Alewife will use this network.

5.2.6 The Run-time System

Nussbaum is working on a run-time system that optimizes locality of memory referencing
through clever dynamic scheduling methods. He implemented a tree scheduler together with
lazy task creation to manage parallelism and locality. Early results obtained on our simulator
indicate substantial benefits over other scheduling methods that are oblivious of the physical
nature of the interconnection network. The tree-scheduler is currently being augmented with
support for multithreaded processor operation.

5.2.7 The Compiler System

David Kranz has retargeted the Orbit optimizing compiler for the APRIL processor. He also
implemented a novel method of dynamic process partitioning called Lazy Futures. The Lazy
Futures method virtually obviates the overhead associated with task creation and deletion
when tasks run on the same processor on which they were created. For example, with Lazy
Futures, the sequential version of an application runs at roughly the same speed as a single
processor execution of a parallel version of the same application.

Maa and Johnson have been working on compiler methods for enhancing locality in parallel
programs by statically partitioning code and allocating data structures based on minimiza-
tion of nonlocal memory references. In Alewife, the task of the compiler is easier than in
other contemporary machines for several reasons. First, we assume the program is explicitly
parallel (by using program-level constructs such as futures). Second, the compiler-based
static methods can be integrated with our sophisticated run-time mechanisms. For example,
compilers often lack accurate execution time profiles to enable a good static schedule; instead,
our compiler can provide hints to the run-time system. Finally, Alewife's shared memory
organization, dynamic scheduling, and caches largely relieve the burden of micro-managing
data access and synchronization.

Several linguistic extensions to our Mul-T programming language are necessary to support
static scheduling of processes and remote memory allocation (e.g., future-on and make-
vector-on). These facilities have been implemented in the Orbit compiler and the ASIM
simulator by Lim and Kranz.

We are examining several large data-parallel applications as test cases for our compiler
work. The lexical matching phase of the SUMMIT Speech recognition system (developed
by the Spoken Language Systems Group) has been parallelized and ported to our system
by Johnson. The particle-in-cell (PIC) program, written originally by Olaf Lubek, has also
been parallelized and ported to Mul-T by Maa and others.

Structurally, PIC consists of steps of operations which produce successive intermediate ma-
trices. The operations typically read from a few locations of the input matrices and compute
some locations for the output matrices, which is used as the input to some subsequent oper-
ations. Fine-grain architectures synchronize on the individual elements instead of on entire
matrices, thereby exposing the producer-consumer parallelism. Because of the relatively
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trivial amount of work involved in each of these operations (usually a sum of few products),
the overhead of scheduling and synchronization becomes prohibitively high. To reduce these
and communication (i.e., improving locality) costs, it will be beneficial to merge some of
the operations together: by merging an upstream operation with a downstream one, we can
potentially make the intermediate matrix element local and eliminate BOTH the communi-
cation and synchronization costs. By merging two peer operations which share some of their
input matrix element accesses, we again reduce the amount of network traffic. The merging
increases the task granularity, thus reducing the number of tasks which need to be scheduled
at run-time and the total scheduling overhead. The desired granularity can be adjusted to
match the system size (i.e., number of processors) and the actual cost structure of the run-
time and hardware to insulate the programmer from details of the run-time environment.
Moreover, once most of the accesses to a matrix element are from a particular task, it starts
to make sense allocating the corresponding matrix elements and tasks to the same processor
node.

5.2.8 Applications

Johnson, Wu, Chan, and others have been involved in developing several large parallel appli-
cations, including Speech Recognition, Particle in Cell, and solutions of partial differential
equations. Performance results on real parallel applications are essential to effectively eval-
uate our ideas on automatic locality management.

5.3 NuMesh

Work by Agarwal, Dally, Knight, Pratt, Ward, and others continues the NuMesh project
whose conception was reported last year. The NuMesh constitutes the first CAG-wide re-
search effort, and is consequently interesting from the dual standpoints of social as well as
computer engineering.

The basis for the NuMesh is the recognition that extant technologies for interconnecting
digital subsystems provide topological flexibility only at substantial performance cost. Com-
munication schemes designed to suppress the impact of physical distances among modules
from the design sp. ce of the system architect, such as backplane buses and hypercubes,
typically reduce best-case communication times to accommodate worst-case distances for
reasons of simplicity. At the lowest level, drive levels and times must anticipate the worst-
case loading allowed by their interconnect rules. This leads to a fundamental tension between
flexibility as to physical and topological layout of a system's components and the degree of
optimization afforded their communication: if a pin on a chip is capable of driving a foot of
PC trace and ten inputs, resource (hardware, time, energy) are wasted when it is used to
drive a single input on an adjacent chip.

One reaction to such inefficiency is to custom-engineer the drivers and receivers on each signal
line to reflect the physical properties of the associated electrical conductor. This approach is
followed to some extent in very high performance systems, in which tedious analog-domain
transmission line analysis techniques are applied to each critical signal conductor in a com-
plicated system. While some such detailed optimization can be justified in high-end system
designs, it necessarily stops far short of the ad hoc optimization, say, of individual output
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Figure 5.5: Schematic View of a NuMesh

pads. Moreover, the prohibitive cost of this methodology rules out its use in cost-effective
systems.

The NuMesh project explores an alternative reconciliation of communication flexibility with
performance: rather than forcing a universal communication technology to conform to ar-
bitrary network topologies, the NuMesh forces higher-level system designs to conform to a
rigidly specified universal communication topology.

5.3.1 The NuMesh Abstraction

The major goal of the NuMesh project is the definition of and support for a standard com-
munication and interconnect standard for modules of arbitrarily complex digital systems.
Abstractly, a NuMesh consists of an arbitrary number of nodes which (partially) populate a
three dimensional mesh, as diagrammed schematically in Figure 5.5.

Each node in the mesh constitutes a digital subsystem which communicates directly with
each of its six orthogonal neighbors via a number of dedicated signal lines. Each signal
conductor is unidirectional, having exactly one receiver and one driver (on adjacent nodes).
Moreover, the physical characteristics of each conductor are rigidly fixed. This mechanical
and topological rigidity allows bandwidth and latency parameters of communication between
adjacent nodes to be highly optimized; our goal is on the order of one GHz for each signal
line in the eventual standard.

Each node combines a common communication substrate with the application-specific logic
it adds to the system. The communication portion of a node includes a very high speed
clocked finite state machine which is programmed (in RAM) to mediate local communica-
tions, as well as drivers and receivers and data paths which interconnect them. The set of
Communication FSMs-CFSMs-occupying each node of a NuMesh operate synchronously at
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the basic communication clock rate (eventually 1 GHz). They are typically pre-programmed
to follow a fixed, systolic communication pattern whose detailed choreography is produced
by whatever compiler or CAD tool also dictates the selection and layout of the modules
themselves.

The general idea is that each module's communications FSM be programmed to follow a
periodic pattern of interactions with neighbors. Although the interactions may vary among
processors, the periods will be identical. If module A transfers a word to its right-hand
neighbor B on clock 37 of each period, then A's FSM will be programmed to drive its lines
to B on that clock, while B will be programmed to load in data from A. By appropriate design
of transition tables, arbitrary systolic communication patterns may be implemented among
processors. In some cases, words loaded by a module are destined to be read subsequently by
that modules DSP; in other cases, they are routed (typically on the next clock) to another
neighbor without DSP intervention or even awareness.

Figure 5.6: NuMesh Node

Communication in a NuMesh thus typically follows a static, precompiled, systolic pattern in
which every node can in theory send data to each of its neighbors during every cycle of the
communication clock. Certain of the data received at a node will be routed by that node's
CFSM to the processor, or other application-specific logic housed in the node. However, we
expect that the bulk of the data received at a node will be forwarded, as through traffic,
to another neighbor during a subsequent cycle by the CFSM. Our goal is to make this
forwarding efficient, allowing remote communications to be implemented as multiple store-
and-forward steps with performance that compares favorably with more conventional remote
interconnect schemes such as buses. It is our presumption of a preponderance of remote
traffic that motivates our design goal that each CFSM support an aggregate communication
bandwidth much higher than that required by the processor (or other application-specific
logic) supported by the node containing it.
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Figure 5.7: Snapshot of NuMesh Communications

Figure 5.7 depicts a typical pattern of communications at some point during a computa-
tion on a 2D NuMesh configuration. Note that communications between adjacent nodes-
indicated by short arrows-take place during the single clock cycle which this snapshot
depicts. Remote communications, depicted by longer arrows, require several cycles; while
the first step along each such path is taken during the cycle depicted, successive steps will
occupy subsequent cycles.

Certain algorithms may benefit from flow control and other synchronization measures in their
underlying communications. These might be superimposed on the primitive (branch-free)
coramunication mechanism by software convention, allowing certain data words to contain
control information. Moreover, CFSM interpretation of selected data words provides a basis
for dynamic routing of selected data messages by the CFSM alone, considerably enhancing
the flexibility of the NuMesh communications substrate. The approach to such dynamics
suggested by the NuMesh structure involves preallocating (at compile time) certain cycles of
the periodic communication schedule to dynamically routed packets, identifying at that time
the cycles at which each CFSM will interpret incoming data as a potential message header.
Such data will dictate, perhaps after a several-clock latency (to accommodate decision logic),
the routing of the message body to be transferred on subsequent clock cycles. Hardware
support for such CFSM decisions is currently a subject of active study.

5.3.2 NuMesh Prototype Hardware

During the 1989-90 academic year, a feasibility study for NuMesh ideas was started with the
design and prototyping of primitive NuMesh nodes built using off-the-shelf parts. Work by
Mackenzie, Jenez, Abdalla, Olsen, and others has led to a 4-neighbor, 2D NuMesh node fab-
ricated on a pair of stacked printed circuit cards. Each node carries a TI TMS320C30 digital
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signal processor chip along with local memory, leading to an aggregate peak performance
of 33 MFlops/node. The nodes are designed to plug together to form desktop prototype
NuMesh arrays, providing an early vehicle for software development and exploration of can-
didate applications.

Although we expect these prototype nodes to be useful both in evaluation of NuMesh ideas
and in pursuit of practical applications, the expedient technology forces many serious com-
promises. In addition to clear size and cost disadvantages, the prototype nodes are clocked
at about 30 MHz and thus impose bandwidth limitations which are more than an order of
magnitude below our performance goals. Moreover, their design supports only static com-
munication models: the CFSM is not equipped to interpret data and make routing decisions
without processor intervention. We expect all of these restrictions to be relaxed somewhat
in a subsequent prototype exploiting custom silicon.

Currently, the prototype NuMesh hardware is interfaced to a NuBus-based Macintosh which
provides host system services and software support; interfaces to alternative workstations
are contemplated in the future. The nodes may be bootstrapped from the Macintosh, using
a scheme developed by Dujari, using only the communication and CFSM logic on each node.
Thus, a NuMesh configuration can be mapped and explored by the host independently of
the processors on each node, allowing the communication substrate to be configured and
diagnosed as a separable subsystem.

Two nodes are operational, and 15 more are under construction; thus we anticipate an oper-
ational four-by-four NuMesh array during the summer. CD-quality analog I/O is provided
by an interface developed by Handley, allowing application of these prototypes to speech
recognition and related signal processing applications.

5.3.3 NuMesh Prototype Software

Work by Fetterman, Jenez, Metcalfe, and Trowbridge addresses the development of an initial
software environment for our prototype NuMesh nodes. The goal is to translate source code
from a static block diagram language (similar to Consort and related real time languages)
to a fully-configured multiprocessor NuMesh, generating in the process both DSP code and
CFSM programming.

The compilation problem is complicated considerably, even in the context of our limited
source language, by the need to make compile-time decisions regarding the distribution of
subcomputations among nodes. In general, such decisions cannot be made at a machine-
independent level, since they involve reconciling computation times with communication
overhead. In order to confine processor dependencies to an isolated code generator module,
we provide for dyadic communications between machine-independent compiler modules faced
with distribution and scheduling decisions and the processor-specific code generator modules
capable of estimating (or bounding) run-times. These interactions make use of a low level
processor-independent intermediate code in a data structure elaborated repeatedly by several
disparate compiler modules.

Trowbridge completed a Macintosh-based frontend for the translator, and Fetterman is com-
pleting a TMS320C30 code generator which produces both optimized pipeline code and tim-
ing information from machine-independent input fragments. Metcalfe completed a UNIX-
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based simulator which allows experiments to be conducted on an approximate model of
NuMesh computations.

Our goal is to complete this initial support software during the summer and demonstrate it,
using our prototype NuMesh nodes, on one or two modest but representative applications.
Speech recognition, which (via Zue's group) provided the initial stimulus for the NuMesh,
remains the primary source for candidate application code. A second application area of
interest is finite element modeling, currently being explored by Arthur Altman who is visiting
CAG from Texas Instruments.
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6.1 1989-90 Activity

Most of ouc activity last year was centered on the CAM-8 project. This is a high perfor-

mance cellular automata multiprocessor that will allow one to explore a new band of the
computational spectrum.

The task is immense, as it includes: (a) functional design at the system level, at the board
level, and at the chip level; (b) interfacing with a host (the SPARCstation-1) that was

just introduced, and whose technical specifications (S-bus, PROM monitor, etc.) are just
beginning to be available; (c) host software at different levels (registers, device drivers,

CAM-8 control, user interface, display and analysis, and experiment management); issues
related to massive scalability (three dimensional interconnection, power distribution, and
heat removal; clock distribution; synchronization; error detection and recovery; and (d)
circuit and behavioral simulation at the chip level (we are designing custom gate arrays) and

at the multi-chip, multi-board level; etc.

We also became project managers, personnel managers, computer system managers, etc.
After appropriate searches, we hired a full-time research programmer and two circuit-design
consultants. We purchased eight SPARCstations and configured them for a number of differ-
ent tasks. Following successful negotiations, we obtained from VTI the free use of their VLSI
design and simulation software, and behavioral simulation software from Veralog. Installing
and learning to use all of these tools is an enormous job.

We also started tentative probes in view of some form of industrial partnership in the CAM-8
project.

Of course, we had to continue doing a fair amount of responding to real time interrupts,
such as conferences, meetings, papers due, reports, proposals, refereeing, etc.

In particular, we wrote a new three-year proposal, Information Mechanics, for NSF, and we
participated in a proposal for an NSF Science and Technology Center on Quantum-effect
Physics, Electronics, and Computation Structures, with Professors Hank Smith and Dimitri

Antoniadis.

Besides work by the research staff [285][286][284][219][282][283][281][220], a fair amount of
theoretical research was conducted by our Ph.D. students [53][148][272][271] and our visitors
[69][781[73][72]. For his Master's thesis, David Harnanan did a remarkable job at designing
aid simulating the interface between CAM-8 and its host.
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7.1 Introduction

The Large Scale Parallel Software Group began in the fall of 1989. Its research is focused on

software issues involved in making effective use of large scale multiprocessors. Most group
members are working on two projects in this area: designing a parallel programming lan-
guage to support writing portable programs for MIMD parallel architectures; and developing
algorithms, and system and language support for writing fault-tolerant parallel programs.
As part of the first project to design a parallel programming language, we developed tech-
niques for implementing concurrent data structures that scale well and make effective use
of local caches. In addition, some group members are doing research related to transaction
processing and to distributed systems. Our research in these areas is described below.

7.2 Portable Parallel Software

We are designing a new programming language to support the implementation and execution
of parallel programs. The language is intended to run on large scale MIMD multiprocessors.
It is clear that there will be many such machines, of both the shared-memory and message-
passing varieties, available in the not-too-distant future. To make use of the machines, and
to evaluate their potential, we need new programming languages that allow them to be used
effectively.

Our language is intended to be used for a wide range of applications, including both symbolic
and numeric computations and programs that have side effects. We expect it to run on both
shared-memory multiprocessors and message-passing multiprocessors. As a secondary goal,
we would like it to run on networked collections of uni- and multi- processors. In addition,
we would like programs to be portable, with good performance, across a broad range of

MIMD architectures.

There are a number of issues that must be addressed to build efficient parallel programs,
including scheduling, choice of an appropriate granularity for processes and data, placement
and migration of processes and data, effective use of caches, and synchronization. Some
systems hide most or all of these issues from the programmer. Others expose the details of
the specific architecture. The first approach gives portability, since the programmer wri'tes
little architecture-dependent code. However, it is difficult to get good performance using the
first approach. The second approach can give good performance, but lacks portability and
can also be difficult to use.

To achieve portability and performance, we are designing mechanisms that allow the pro-
graminer to control issues such as scheduling, granularity, and placement in an architecture-
independent manner. For example, we developed a scheduling method that allows programs
to be written so that the grain size of processes adapts to the number of processors available
and on processor loads. The progranimer supplies information that allows the system to
make informed decisions about which tasks are most usefully split into concurrent subtasks.
We are experimenting with mechanisms to achieve similar results for the other issues.

To judge performance, we plan to implement our language on one or more real multiproces-
sors. In addition, however, we will use simulators to allow us to experiment with a wider
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range of architectural features and to better understand how effective our approach is at
providing portability. To avoid building separate simulators for each target architecture, we
have designed and are building a retargetable simulator, which is easily tailored to simulate
different architectures.

7.3 Fault-tolerance

Advances in hardware technology have made it plausible to construct a parallel computer
with hundreds of thousands or even millions of processors sometime in the next decade.
Programming such machines will in itself be difficult. We believe, however, that an equally
difficult challenge will be that of maintaining a working machine in the presence of failures.

Various studies have shown the mean time between failures (MTBF) for current machines
to be on the order of a few weeks or months. A machine 100 times as big would have an
MTBF on the order of a few hours or days. Without mechanisms to limit the amount of
work lost when a failure occurs, the range of problems that can be solved effectively on such
large machines will be limited to those that take relatively little time to compute. However,
existing techniques for achieving reliable operation in the face of failures do not scale to large
numbers of processors, or to machines with very large numbers of hardware components.

The goal of this research is to develop software techniques that provide a low overhead
and scalable approach to fault-tolerance. (Our efforts are directed at tolerating hardware
and communication failures; we are not addressing the problem of tolerating design and
programming errors.) Adequately addressing the challenge of ensuring reliable operation
for large scale multiprocessors requires improvements at all levels, from low level hardware
components through application software. We are focusing on software techniques because
they provide more flexibility in tailoring the level of redundancy and reliability to the needs
of applications, and also make it easier to reconfigure machines dynamically when failures
occur. In addition, by focusing initially on the requirements of applications and of system
software, we will gain a better understanding of what should be provided by lower levels.

Scalability is important to make effective use of large scale machines. In addition, low
overhead is essential to allow fine-grained parallel computations. In particular, if the fault-
tolerance mechanisms significantly increased the cost of communication, then programmers
would be forced to use a larger grain size to amortize the ovrhead.

Fault-tolerance methods typically exhibit a tradeoff between overhead during normal opera-
tion and the cost of recovering from a failure. Fault-tolerance mechanisms for parallel systems
can be loosely classified as either optimistic or pessimistic. Purely optimistic methods record
checkpointed process states and other information asynchronously, without forcing delays at
particular points in the computation. After a failure, such methods must rollback one or
more processes to earlier states to find a consistent state of the system. In contrast, pes-
simistic methods prevent the failure of one process from causing other processes to rollback.
Optimistic methods attempt to minimize overhead, but may take a long time to recover.
Pessimistic methods impose significant delays, but can recover quickly.

Pessimistic methods do not meet our goal of low overhead. Purely optimistic methods,
however, do not scale well: they perform very poorly in large scale multiprocessors. There
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are two reasons for this. First, recovery from a single failure could involve every processor in
the machine, and could take long enough that another failure would be very likely to occur
before recovery from the first failure completed. As a result, useful forward progress could
occur very slowly. Second, given a fixed probability of failure for each individual component
in each step, we can show that the expected expansion factor in execution time using a purely
optimistic method grows exponentially with the number of components, even ignoring the
fact that recovery takes longer for larger machines. (The expansion factor is the ratio of
the actual execution time for a computation in the presence of failures to the amount of
time required for the computation when no failures occur.) Thus, for any fixed component
reliability, a purely optimistic method breaks down for very large machines.

The best approach seems to be an optimistic approach that limits the amount of work
required to recover from a failure; such an approach will sometimes require a process to wait
while recovery information is recorded, but the delays should be shorter and less frequent
than with purely pessimistic methods. Over the past year, we have designed a "limited
optimistic" method that represents an intermediate point in the tradeoff between overhead
during normal operation and recovery time: the overhead is more than purely optimistic
methods, but less than pessimistic ones, while the recovery time is less than optimistic
methods, but more than pessimistic ones. The technique limits the length of a chain of
processes that can be involved in a cascaded rollback after a failure; this limits the recovery
time, and prevents the blowup in the expansion factor that occurs with purely optimistic
methods.

In general, it is difficult to achieve both low overhead and fast recovery. As a way of
circumventing this tradeoff and achieving both very low overhead and fast recovery, Anthony
Joseph has been developing techniques for application-specific fault-tolerance. The idea is to
take advantage of properties of applications to reduce the communication and coordination
required for fault-tolerance, to reduce the work lost when a failure occurs, and to reduce
the time taken to recover from a failure. Our initial experiments indicate that application-
specific methods can perform significantly better for some applications than any application-
independent method.

Application-specific methods have the disadvantage that they require additional program-
ming that could add significantly to the complexities of writing a parallel program. In
our experience so far, however, the added complexity is actually quite small. For exam-
ple, Anthony Joseph has been looking at numerical algorithms. For some algorithms, such
as asynchronous iterative methods [36], processes can take checkpoints and recovery from
failures without any coordination or communication. This purely local method eliminates
almost all of the overhead of more general methods, and also loses much less work when
a failure occurs. Simulations show that it performs significantly better than other meth-
ods [154[. Other examples have been studied by Henri Bal, who wrote several fault-tolerant
parallel programs in Argus [197] while visiting the Large Scale Parallel Software Group in
the fall of 1989. His experience is described in [32]. We are currently studying other appli-
catiois, both to understand what language and system support might simplify the task of
writing fault-tolerant parallel programs, and to understand the potential performance gain
of application-specific methods over application-independent methods.
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7.4 Concurrent Data Structures

Many parallel programs are organized as a collection of processes accessing shared data
structures, through which processes communicate and coordinate with each other. This
organization is common in programs written for shared-memory architectures; it also applies
to many programs written for message-passing architectures, particularly those written in an
object-oriented style. Over the last year, we developed several new algorithms for concurrent
data structures. Our new algorithms reduce contention among the processes sharing the data
structure; as a result, our algorithms provide significantly better performance than existing
algorithms, particularly when many processes are using the data structure concurrently. As
part of our work on concurrent data structures, we also developed new techniques for software
cache management, as well as new implementation techniques for synchronization primitives
such as read-write locks. The sections below describe this work in more detail.

7.4.1 Concurrent B-trees

B-trees are widely used in databases and other applications (e.g., file systems) that require
fast access to data stored on disk; they are also useful in parallel programs that require fast
access to shared data, even if the data is stored in main memory. A number of algorithms
for concurrent access to B-trees have been developed (e.g., see [37][187][228][180][258]); all
of the previously existing algorithms require processes to lock nodes of the tree in such a
way that a process updating a node blocks all other processes that attempt to access the
node while the update is being performed. We developed a new concurrent B-tree algorithm
that eliminates the need for a process traversing down the tree to block while an update is
propagated up the tree [290]. The net result is that contention at non-leaf nodes of the tree
is virtually eliminated.

The basis of our new algorithm is an abstraction that is similar to coherent shared memory,
but provides a weaker semantics; we call this abstraction multi-version memory. Multi-
version memory is used in the algorithm for all non-leaf nodes of the B-tree, while coherent
shared memory is used for the leaves. Multi-version memory weakens the semantics of
ordinary shared memory by allowing a process reading data to be given an old version of
the data. (For example, it might simply use the version in its cache.) While this weaker
semantics is not as generally useful as that provided by coherent shared memory, it turns
out to be adequate for our B-tree algorithms. We describe multi-version memory in more
detail in Section 7.4.3 below.

As described below, multi-version memory can be implemented so that a process reading data
can use a local cached copy, and almost never needs to be delayed while waiting for messages
that update or invalidate caches. As a result, our new concurrent B-tree algorithm should
continue to work well in large scale parallel systems in which the number of processors sharing
the tree is large or the communication delay between processors (or between processors
and the global memory for a shared-memory system) is large relative to the speed of local
computation.

Relatively little work has been done to study the performance of concurrent B-tree algo-
rithms. In a Master's thesis due to be completed in September 1990, Paul Wang has been
evaluating the performance of our new algorithm and comparing it to that of other B-tree
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algorithms. Four different B-tree algorithms have been implemented in Concurrent Aggre-
gates (CA), a language developed by Andrew Chien [711. CA allows a collection of objects
to be viewed as a single logical object, thus making it easy to encapsulate cache management
algorithms for multi-version memory and for coherent shared memory. The resulting pro-
grams have been run on a simulator for a message-passing multiprocessor. The simulations
are being used to study how the performance of each algorithm varies with the number of
worker processes accessing the B-tree, with the length of the delay for interprocessor mes-
sages, and with the implementations of multi-version memory and coherent shared memory.
Results to date indicate that our new algorithm provides significantly lower latency and
higher throughput than the other algorithms.

7.4.2 Concurrent Priority Queues

The priority queue is a fundamental data structure that has been used in a large variety of
parallel algorithms, such as multiprocessor scheduling and parallel best-first search of state-
space graphs. In these algorithms, each process performs an access-think cycle, in which the
access is one of the insert, extract, decrease key, and delete operations on the priority queue.
For his Master's thesis, Qin Huang has been designing and evaluating algorithms for parallel
priority queues.

Algorithms that ensure a strict semantics for the extract operation, which extracts the mini-
mum element from a priority queue, exhibit limited speedup because of the bottleneck caused
by the synchronization needed to ensure that the element returned by the extract operation
is the least element. To avoid this bottleneck, it is necessary to relax the specification of the
extract operation so that it is not required to return the least element. The performance of
the application may be better if the element returned is close to the minimum, but in many
applications the correctness of the final result of the computation does not depend on which
element is returned.

We designed two different algorithms that relax the specification of extract. One is based
on Fibonacci heaps, the asymptotically most efficient data structure for sequential priority
queues. This algorithm keeps a cache of a small number of the most promising elements
of the queue; a process executing extract selects a random element from the cache, thus
avoiding a single serial bottleneck. Bottlenecks in accessing the root list of the Fibonacci
heap are avoided by dividing it into a number of separate sections, each of which can be
accessed independently.

The seco.id approach, which we have called a concurrent priority pool, is based on a combi-
nation of a concurrent B-tree algorithm and concurrent pools [212][176]. A concurrent pool
is a distributed data structure for managing a pool of resources; it is divided into a number of
segments that can be accessed independently to add and remove elements from the pool. A
concurrent priority pool is like a concurrent B-tree, except that concurrent pools (extended
to handle splitting and merging) are used for the leaves. The extract operation attempts to
remove an element from the leftmost leaf by accessing one of the segments in that leaf. Since
there are multiple segments, several extract operations can proceed concurrently without any
inte erence.

Both algorithms allow the quality of the element returned by extract to be controlled, in
the first case by controlling the size of the cache of promising elements and in the second
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case by controlling the number of segments in each leaf of the tree. Higher speedups can be
obtained by relaxing the quality of the returned elements. Thus, they permit an application
to tune its use of a concurrent priority queue to balance the quality of the elements returned
by extract against the contention found in accessing the queue.

Both algorithms have been implemented in Mul-T [177], along with a concurrent binary
heap algorithm developed at the University of Texas at Austin [251]. Experiments have
been performed on an Encore Multimax. Results to date show that the two new algorithms
provide essentially linear speedup for up to 10 processors (as many as the machine currently
provides), while the concurrent binary heap is limited by contention at the root of the heap
to a speedup of about 4. Further experiments are planned, both on an Encore machine
with more processors and on simulators, to see how well the algorithms perform with more
processors and to understand how the quality of the elements returned by extract is affected
by the number of processors concurrently accessing the queue. Applications of parallel
priority queues, such as a parallel single-source shortest path algorithm and a parallel solution
to the traveling salesman problem, are also being tested to evaluate the performance of the
different parallel priority queue algorithms for particular applications.

7.4.3 Software Cache Management

In many parallel applications, caching is vital for achieving high performance. For example,
the root of a B-tree is visited by every operation on the tree, and is rarely updated. If
only a single copy of the root is maintained (either in global memory in a shared-memory
architecture, or in the memory of a single processor in a message-passing architecture), the
root is likely to be a serious limiting factor in performance. Caching improves performance
in part by allowing data to be accessed in local memory, thus avoiding the delay involved in
accessing a remote memory, and in part by replicating data so that many processes can read
it in parallel. Coherent shared memory, however, constrains caches to be managed so that the
read and write operations appear to be atomic.1 These constraints require synchronization
between readers and writers, and also require communication to update or invalidate caches
after a processor has written to memory.

An alternative to maintaining cache coherence is to delegate the management of cached
copies to the application. The advantage of this approach is that the cache management
algorithm can be tailored to the needs of the application. The disadvantage is that programs
could become significantly more complex. However, we believe that this complexity can be
managed by encapsulating cache management algorithms in the implementations of abstract
data types.

Multi-version memory is an example of a memory-like abstraction that can take advantage
of local caches, but requires less synchronization and communication than coherent shared
memory. Abstractly, the state of a multi-version object at any point in time is a sequence
of versions. The first version in the sequence is the initial version, and the last version is
the current version. Writers update the object by extending the sequence with additional

'There are a number of subtly different correctness criteria that have been used for coherent shared
memory, including sequential consistency [183] and linearizabilhty [144j. We will take linearizability as our
definition of correctness.
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versions (thus changing the current version), and readers read the object by choosing and

reading some version. The specification allows a reader to read any version, not just the
current version. This nondeterminism allows us to implement a multi-version memory so
that readers can run in parallel with writers. In addition, propagation of an update to
cached copies can be done lazily in the background; thus, the invalidation (or update) load
for a heavily shared object can be spread out over time, and processes need not wait for
propagation to complete.

An application that can use a multi-version memory will probably perform better if readers
obtain fairly recent versions, but the specification of a multi-version memory requires the
application to be prepared for a reader to obtain an arbitrary version. Additional constraints
could be added to the specification. For example, we might require a process reading a multi-
version object to choose a version that is no older than any other version already used by the
process. Alternatively, we could require it to choose one of the k most recent versions. Such
constraints are not needed for the applications we have studied so far. However, they might
be useful for some applications, and should have little negative impact on performance.

Brad Spiers has been studying the performance of different implementations of multi-version
memory and comparing their performance to that of coherent shared memory. He has been
using a simple simulator, built by Wilson Hsieh, for a shared-memory multiprocessor. The
simulations show, as expected, that multi-version memory and coherent shared memory
take approximately the same amount of time for workloads in which either all processes only
read or in which all processes only write. Simulations are currently beipg done for mixed
workloads, in which processes both read and write. Our expectation is that multi-version
memory should provide better performance than coherent shared memory in these cases.
The simulations will help us understand the magnitude of the performance difference, and
how it is affected by variations in the number of processors and in the time required for
accesses to global memory. They will also help us understand how often a reader obtains a
version other than the current version; this information will help in predicting the utility of
multi-version memory for various applications.

As discussed in Section 7.4.1, multi-version memory can be used in concurrent B-tree algo-
rithms to reduce contention and mask network latency. In general, it can be used in any
application in which a process reading data can tolerate reading an old version of the data.
For example, in asynchronous iterative relaxation algorithms, a process computing a new
value for one point can use values for other points from any previous iteration. Similarly, in
a branch-and-bound search algorithm implemented using several worker processes, it is not
necessary for each process to know the most recent value of the global bound representing
the best solution found so far.

The advantages of multi-version memory over coherent shared memory suggest that it may
be fruitful to view cache management as an application-level replication problem, where both
the semantics of the shared data and the algorithm used to manage caches can be designed as

part of the application. Such an approach fits naturally into an object-oriented programming
style based on inventing application-specific abstract data types, such as that advocated by
Liskov and Guttag (203]. Future research will consider what primitives should be provided
by the hardware and by the programming language to support this kind of software cache
management.
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7.4.4 Distributed Locking

Read-write locks are used in many concurrent data structures. The traditional method for
implementing read-write locks, and many other synchronization primitives, is by use of a
monitor [147]. A monitor protects synchronization data with a mutual exclusion lock; any
process that wishes to access the synchronization data (e.g., to acquire a read lock, or to
release a write lock) must first acquire the mutual exclusion lock. To implement a read-
write lock, the monitor might contain a count of the numb,,r of readers and a flag ind;cating
whether a writer is currently active.

Because the data in a monitor can be accessed by only one process at a time, the monitor
itself can be a serious source of contention. In many cases, this contention is logically
unnecessary. For example, processes acquiring read locks do not need to synchronize with
each other; however, processes acquiring write locks do need to synchronize with each other
and with processes acquiring read locks. A distributed locking strategy can be used to avoid
this unnecessary contention.

We designed a distributed locking strategy based on the idea of caching locks as well as
data. If a lock is already cached in a particular mode, an acquisition request for the lock
in that mode can he satisfied without communicating with other processes. Otherwise, the
acquisition request is handled by ensuring that no process has the lock cached in a conflicting
mode. Similar strategies have been used in distributed file systems and in the Vaxcluster
lock manager.

Caching locks allows readers to run without interfering with each other. However, the cost of
acquiring a write lock can be quite high, since it involves synchronizing with all readers that
have the lock cached. We are experimenting with other distributed locking strategies, based
on software combining trees, that reduce the cost of write locks with only minimal increase
in the cost of read locks. Wilson Hsieh is using a combination of analysis and simulation to
understand the tradeoffs between the co~t of read locks and the cost of write locks.

For the simulations, Wilson built a simulator for a shared-memory multiprocessor that allows
the user to write parallel programs in Scheme, using special functions to access shared objects.
The simulator simulates a parallel machine with an arbitrary number of processors, each of
which has some local memory. There is also a global memory, which must be accessed over
the network. The simulator does not simulate network contention (e.g., tree saturation of
the network), but does simulate contention on objects in the global memory. Each object in
global memory is treated as if it has infinite memory to queue memory requests. The relative
costs of network accesses and local operations can be varied by the user. The simulator is
also being used by other students for other experiments.

7.5 Performance Specifications

A program has a performance bug when some cost of its execution-e.g., response time,
throughput, or resource utilization-is highcr than it is supposed to be. Performance de-
bugging is the process of detecting, locating, and eliminating performance bugs. Building
programs that perform well typically involves a combination of designing for good perfor-
mance from the start and doing performance debugging when problems show up after th,
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program is implemented and running. In many situations, the implementor of a program
does not-and should not be expected to-understand the implementation of the underlying
system at all levels. Most application programmers trying to make their programs run fast
will not have detailed knowledge about the implementation of the underlying operating sys-
tem, yet application performance is affected by operating system performan(,. which itself
is affected by the manner in which the application uses the operating system.

It has long been common software engineering practice to provide functional specifications
for program modules so that a client of a module need not know how it is implemented in
order to use it. A functional specification tells the client exactly what functionalit, he can
expect from the module, and a functional bug exists when a module fails to meet is specifi-
cation. In the same way, a performance bug is a failure to meet a performance specification.
Yet, precise performance specifications are even rarer than precise functional specifications.
At best, performance specifications tend to be vaguely stated, and at worst, they exist only
in implementors' and users' minds as some expectation of execution cost. Consequcntly,
mistaken performance expectations are difficult to detect and correct, and when perfor-
mance bugs do exist, the person doing the debugging must have exteusive knowledge of the
implementation of large parts of the system.

For her Ph.D. thesis, Sharon Perl is developing a method for writing performance specifica-
tions of concurrent systems. The goal is to make it easier for programmers to tell when a
program has a performance bug and to determine which part of the program is at fault. The
thesis of this research is that having explicit and precise pertermance specifications makes it
easier to build programs that perform well and, furthermore, that writing such specifications
is a practical endeavor. The latter claim will be demonstrated empirically, by developing per-
formance specifications for a real software system. The work focuses on specifying response
times, although we hope the work will extend to other aspects of performance. The former
claim will be supported through argument and reports of experience with the specifications
that are developed.

The context for this work is concurrent systems, ranging from multitasking uniprocessor
systems to small-to-medium scale multiprocessors to distributed systems. We are not con-
sidering highly parallel systems or applications (e.g., Connection Machines), though the
results may be of some use in that domain. We assume that the software to be specified
has a modular structure, i.e., that it is decomposable into i, :dules or subsystems for which
performance specifications may be written. An underlying assumption of this work is that
performance bugs exist that are not often detected, or that are caught fairly long after they
appear. This is a reasonable assumption in our experience, particularly for systems where
good performance is desirable but is not the primary coacern of the iniplementors (e.g.,
systems in research environments).

This work should have the following major contributions:

" An approach to writing performance specifications that identifies a structure and con-
tent of specifications appropriate for their use as documentation and in performance
debugging;

" A methodology for using performance specifications for performance debugging;
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" Actual performance specifications for a significant part of a distributed file system;

" A methodology for developing performance specifications; and

" An initial version of a language or notation for writing performance specifications.

The method will be demonstrated by specifying the performance of significant parts of a
replicated distributed file system.

7.6 Atomic Garbage Collection

Transactions, used in database and distributed systems, provide fault-tolerance by masking
failures that occur while they are running. Automatic storage management, used in modern
programming languages, enhances reliability by preventing errors due to explicit deallocation
(e.g., dangling references and storage leaks). A uniform storage model simplifies program-
ming by eliminating the distinction between accessing temporary storage and permanent
storage. We call storage that is managed automatically using garbage collection, manipu-
lated using atomic transactions, and accessed uniformly, a stable heap. For his Ph.D. thesis,
Elliot Kolodner is designing and prototyping algorithms for managing a large stable heap.
Stable heap management will make it easier to write reliable programs and could be useful in
programming languages for reliable distributed computing [196][90], programming languages
with persistent storage [10][18], and object oriented database systems [66][211][293][299].

A programmer views a stable heap as a single-level store. The heap is stored on disk, with
pages brought into primary memory as needed. The heap has a designated set of root objects.
Not all objects are treated as stable; instead the set of roots is partitioned into stable and
volatile subsets, and an object is stable if and only if it is accessible from one of the stable
roots

Computations run as atomic transactions [132]. Objects are created and modified by trans-
actions; an object becomes stable if a pointer to it is placed in an existing stable object by
a t-ansaction that commits. A garbage collector reclaims an object's storage automatically
when the object is no longer accessible from any of the roots. In addition, a recovery system
ensures that stable objects survive failures: modifications performed by aborted transac-
tions are undone, while modifications performed by committed transactions are guaranteed
to survive both system crashes and media failures.

Automatic storage management for a stable heap is complicated by the fact that a garbage
collector typically moves and modifies objects. Collectors move objects to improve paging
performance; they modify objects to reduce the amount of additional storage needed by the
collector itself. The movement and modification of objects during garbage collection requires
coordination with the recovery system. A collection algorithm for a stable heap that solves
these problems is called an atomic garbage collector.

Many applications, such as computer-aided design, computer-aided software engineering, and
office information systems, require large amounts of storage, timely responses for transac-
tions, and high availability. Our earlier research produced an atomic garbage collector, and
recovery system suitable for small stable heaps [175][174]. In that work, the atomic collector
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is based on a stop-the-world copying collector and the recovery system uses a shadowing
technique that requires a traversal of the stable object graph after a crash. These algorithms
are not suitable for applications with large heaps: a stop-the-world garbage collector may
delay transactions arbitrarily, and the traversal of the stable state slows recovery after a

failure, reducing availability.

The goal of our current research is to design an integrated atomic garbage collector and
recovery system appropriate for a large stable heap on stock hardware. The collector must
be incremental and atomic: it cannot attempt to collect the whole heap in one pause and it
must interact correctly with the recovery system. The time for recovery must be independent
of heap size and adjustable to be arbitrarily short using checkpoints.

During the past year, we completed the design of the algorithms. Our approach divides the
heap into volatile and stable areas. Objects are created in the volatile area. After an object
becomes stable it is moved to the stable area at an appropriate time. The volatile area can
be collected using incremental or generational collection. We designed an incremental atomic
garbage collector based on the ideas of Ellis, Li, and Appel [105] to collect the stable areas.
The collector interacts correctly with the recovery system, and it writes enough information
to the log (maintained by the recovery system) to avoid redoing the entire collection after a
crash.

We have worked out the details for two approaches to recovery: (1) write-ahead logging with
update-in-place, and (2) a variation of intentions lists. In both approaches the information
associated with stable objects maintained for active transactions is kept in the volatile area
separate from the objects themselves. This allows recovery without a traversal of the object
graph and lowers the space overhead for stable objects. For both approaches, the location of
a committed object version in the stable area does not change; it is updated in place. This
avoids creating garbage in the stable area and lowers the space overhead for recovery.

While designing the new recovery system, we found a bug in the design of the current Argus
recovery system. Because of the bug, a transaction might commit before values for all the
objects accessible from the object that it modified have been written to stable storage. Thus,
after a crash the effects of some committed transactions might not be recoverable. In a design
note [173], we describe new recovery algorithms that overcome this bug.

Currently, we are implementing a prototype of a stable heap to show the feasibility of our
design, The current implementation of Argus [2011 serves as the basis for the prototype; we
are replacing its storage management and recovery algorithms.

7.7 Communication in Heterogeneous Distributed Systems

To send a message in a heterogeneous distributed system, it may be necessary for the sender
or receiver of the message, or both, to translate the data in the message to or from its
internal format. The typical method for handling this problem is to define a single standard
representation for each data type to be used in messages. If a module's internal data uses a
different representation, it must translate the data to or from the standard to send or receive
it. If two communicating modules use the same internal representation that differs from the
standard representation, this scheme results in unnecessary translation by both modules.
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An alternative approach is to define multiple representations for each data type to be used
for communication. By choosing a representation for the data in a message that matches its
internal representation, the sender of the message can avoid excess translation.

For his Ph.D. thesis, Earl Waldin is designing a communication system that allows multiple
representations of data types to be used in messages. Some existing systems allow multiple
representations to be defined for transmitting simple scalar data such as integers and char-
acters. Multiple representations can also be useful for more complex data structures, and in
general for arbitrary abstract data types. Allowing multiple representations has two main
advantages: it can reduce the amount of translation involved in sending messages, and it
allows the system to evolve easily by adding or changing the representations of data used in
messages.

A prototype is being designed as part of the Mercury system. In Mercury, a distributed
program is composed of distinct entities that communicate with one another, where an
entity resides entirely at a single node. Entities are implemented by different mechanisms in
different programming languages. A receiving -rItity provides one or more ports, which are
procedures that can be called remotely from other entities. The arguments and results of
port invocations are pzssed by value; there is no way for references to data in one entity to
be sent to other entities. The transmitted values belong to value-spaces ( Vspaces), which are
similar to types in programming languages. The term Vspace is used to emphasize that data
is passed by value, and that the data in a message has no operations that can be performed
on it. Abstract Vspaces are user-defined Vspaces; their representations are defined in terms
of other abstract and built-in Vspaces.

Over the past year, algorithms for negotiating representations to be used in messages have
been designed. Current work involves the design of the interface description language (IDL)
and annotations for its use with the C programming language. The IDL is used to give a
language-independent description of a program interface in terms of ports and Vspaces. The
language-specific annotations are used to describe how a given program uses that interface.
For example, the annotations may describe mappings between types in the program and
Vspaces in the interface. The annotations also describe interactions between the program
and the communications substrate that implements the Mercury protocols.

As part of defining the IDL, we studied the feasibility of adding interface types to Mercury
along with a mechanism for dynamically checking their use. Loosely stated, an interface
type plays a similar role to that of an abstract data type in a programming language. More
specifically, an interface is a collection of ports (i.e., operations) through which a client may
access a subsystem. A subsystem in turn consists of one or more entities that together
provide a service. Each port in the interface is provided by a single entity; invocation of
a port results in a remote procedure call to the corresponding entity. To a client, then, a
subsystem appears as a (distributed) object that responds to invocations of the ports in its
interface. The behavior of a subsystem is determined by an interface to which we assign a
type. A given subsystem corresponds to an instance of a type.

Type checking the use of interfaces is more difficult than type checking the use of abstract
data types in a program. The greatest difficulties arise because subsystem interfaces are
constructed dynamically and becnise subsystems may evolve. As an example of the first,
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consider the following subsystem: Entity EA constructs an instance A of interface IA con-
taining only ports that it provides and then exports this instance (e.g., by putting it in some
catalog). Entity EB imports A (e.g., by looking it up in the catalog) and constructs an
instance B of interface IB by combining some of the ports of A with ports that it provides.
It then exports B. The subsystem, then, consists of entities EA and EB and its interface is
described by IB. A client can then import B and invoke its ports. The client only knows
about IB, and from its point of view, all the ports in B belong to IB, including those imple-
mented by EA. From EA's point of view its ports belong to IA. To type-check the client's
use of a port from EA, we need to know the relationship between IA and 1B. In addition,
we would like to detect if EB made an error in constructing B. This requires that the client
and EA exchange information at runtime.

'To illustrate the problem of evolution, consider replacing EA in the above example with a

new version EA providing an interface IA that is compatible with IA, in that every port in
IA is also in IA. Since clients may still have ports exported using 1A, E' needs to know the
relationship between IA and 'A, as well as that between I' and IB.

Initial research indicates that it may be feasible to provide interface types and type checking.
Doing so requires that the programmer describe the relationship between an interface ex-
ported by an entity and that of the subsystem to which the entity belongs. This relationship
can be described statically. Furthermore, it imposes an order on the replacement of entities
in a subsystem. Further research is needed to determine if these constraints are acceDtable.

7.8 Transaction Processing

Transaction systems are becoming widely used in database systems, office automation sys-
tems, and distributed systems. Implementations of transaction systems are large and com-
plex, and involve subtle algorithms that interact in poorly understood ways. Formal tech-
niques can be very useful in managing this complexity. In joint work with Alan Fekete,
Nancy Lynch, and Michael Merritt, William Wcihl has continued the development of a formal
model for transaction systems that simplifies the description and verification of transaction-
processing algorithms. The model is quite general, allowing a wide range of algorithms to
be described. In the last year, we completed the description and verification of a general
locking algorithm (112]. We also generalized proof techniques based on serialization graphs,
originally developed for single-level transaction systems, to nested transaction systems [113].
In the original work on serialization graphs, recovery was essentially ignored by considering
only executions in which all transactions commit. Our work clarifies the interactions with
recovery by making explicit the assumptions about recovery that are implicit in earlier work.

In other work, William Weihl has analyzed the interactions between concurrency control
and recovery in transaction systems [289]. There has been little previous theoretical work
on recovery, and the extensive theoretical literature on concurrency control ignores recovery.
However, not all "correct" recovery algorithms work with all "correct" concurrency control
algorithms. We have developed techniques for analyzing the interactions between concur-
rency control and recovery, and have used them to give necessary and sufficient conditions for
a concurrency control algorithm to work with each of several different recovery algorithms.
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Our analysis of the interactions between concurrency control and recovery also suggests a
useful methodology for verifying concurrency control and recovery algorithms that allows
their interactions to be ignored as much as possible: first, give a very abstract description of
both the concurrency control and the recovery algorithm. This description can be used to
analyze their interactions without getting overwhelmed by details of either algorithm, and
to prove that the combination of the two algorithms is correct in the sense that they ensure
that transactions are atomic. Second, describe each algorithm in detail, and show that the
detailed algorithm implements the more abstract algorithm. In this second step, the details
of concurrency control can be ignored when showing that the detailed recovery algorithm is
correct, and vice-versa. This proof methodology seems to lead to much simpler proofs.
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8.1 Mercury System Development

Rob Austein, Karen Sollins, and John Wroclawski continued to develop the Mercury system.
Recently, they implemented a second generation version of Mercury for C/Unix programmers.
This system combines work in the areas of RPC semantics, heterogenous communication,
and binding architectures to form a substrate for multi-architecture distributed computing.
We summarize our work in each of these areas separately because each result is useful on its
own.

Programs in the Mercury system communicate using pipelined sequences of remote procedure
calls known as call streams. Rob Austein and John Wroclawski developed and implemented
a practical design for call streams. We defined the behavior of call streams in the presence of
flow control and limited memory resources. We specified a standardized network transport
layer model called the Mercury Virtual Transport. This model specifies the services Mercury
expects from the underlying network. We designed a protocol which implements the full
semantics of call streams using this transport model. Use of the virtual transport concept
allows us to specify the call stream protocol in a network-independent fashion. We have
defined a mapping protocol which implements the virtual transport over traditional byte
stream transports such as TCP or ISO TP4. We have used this work to implement call
streams over both Unix intra-machine and IP/TCP transport protocols.

Presentation functions allow heterogeneous systems to communicate in terms of typed data
objects. Since its inception, the Mercury project has explored the effects of introducing
user-defined or abstract types into the presentation layer. This year, Karen Sollins and John
Wroclawski have investigated presentation architectures which support evolvable systems, in
which individual modules may be enhanced or replaced gracefully without requiring changes
in other modules. We propose a system which supports abstract presentation types, a well
defined model of type compatibility, and a set of system-supported implicit type conversion
rules. Wc argue that this allows decentralized systems to be specified and constructed in a
manner which is type-safe and precisely captures the user's intent, while supporting flexible
and evolvable interrelationships between modules. We are currently implementing a Mercury
presentation layer based on these principles.

Karen Sollins and John Wroclawski implemented a binding architecture which supports long-
lived modules, which may crash and restart without loss of state; and mobile mrodules, which
may move from machine to machine invisibly to the client. Mercury remote procedures are
accessed through ports, typed transmissable procedure-valued objects which reference pro-
cedures at remotely available modules. We implemented the notion of ports with pre-bound
arguments, set at port creation rather than call time. A principal use for this mechanism
is to transparently utilize a single remote procedure as the "operation handler" for many
"objects" by associating the handler procedure with a number of ports, each containing a
different "object" as a pre-bound argument. Pre-binding elegantly supports a single invoca-
tion mechanism which can appear either procedure-oriented or object-oriented, depending
on the requirements of the particular problem.

Rob Austein and JoILIL Wroclawski developed a simple model for exception and condition
handling which replaces the ad hoc mechanisms often used in C programs. Our model
views exceptions as belonging to a hierarchically organized class structure, and allows the
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programmer to dynamically bind an exception handler to a class of exceptions. Exception
handlers may take a number of actions, ultimately either restarting the computation or
ur.winding to an enclosing stack level. We implemented this mechanism as a C library,
which is in use within the Mercury project and has been distributed to several sites outside
MIT.

Rob Austein desighed and implemented a lightweight process (threads) package for Unix
which provides features missing from other work, including preemptive scheduling, reasonable
synchronization primitives, and graceful interaction with the Unix I/O system.

8.2 Mercury Presentation to Open Software Foundation

Barbara Liskov, Bill Weihl, and John Wroclawski presented the Mercury project to the Open
Software Foundation in response to a Request for Proposals for distributed computing tech-
nology. Our presentation comprised an overview of the Mercury system, detailed responses
to questions considered important by the OSF evaluation team, and a proposal describing
one possible integration of Mercury's ideas into a larger distributed computing toolbox.

Barbara Liskov presented our submission and served on a panel at the initial meeting of OSF
member organizations. John Wroclawski attended a series of review meetings, discussing
Mercury with the OSF team and other interested parties.

Although the OSF eventually chose to base their efforts entirely on commercially available
technology, our work received substantial exposure and comment as a result of this presen-
tation.

8.3 Modular Application Environment (MAE)

Mike Frumkin and John Wroclawski are exploring techniques to make applications accessible
as building blocks to relatively naive users. Our concept is to define the behavior of an
application in an abstract logical manner, rather than as a specific set of user interface
actions. We then present the same abstract interface directly to the user through an interface
tool of the user's choice, and to other applications through a set of remote procedures. A
global naming and support environment allows users to specify inter-application links in an
intuitive fashion. MAE uses Mercury as a conimunications substrate.

This work, which will constitute Mike Frunikin's Master's thesis, was supported by an RA
from the Advanced Network Architecture Group during the spring of 1990.

8.4 Synchronized Clock Message Protocol

Barbara Liskov, Liuba Shrira, and John Wroclawski developed the Synchronized Clock Mes-
sage Protocol, a new message passing protocol which provides guaranteed detection of du-
plicate messages even when the receiver has no state stored for the sender. The method is
based on the assumption that clocks throughout the system are loosely synchronized. Our
work shows how to build higher level protocols, such as RPC, which provide at-most-once se-
mantics without requiring a performance-lowering connection setup step. We implemented
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a SCMP-based RPC protocol within the widely used Sun RPC library, and showed that
SCMP-based at-most-once remote procedure calls could be provided at the same cost as less
desirable RPC's that do not guarantee at-most-once execution.

Liuba Shrira presented an early version of this work at the Second IEEE Workshop on
Workstation Operating Systems, and Barbara Liskov gave a talk about the work at the Uni-
versity of Arizona. A later version has been accepted for presentation at the 1990 SIGCOMM
conference.
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9.1 Introduction

Research in the Programming Methodology Group has continued to focus on the area of
distributed computing. We are working on a replicated Unix file system for use via the NFS
protocol [259][276], and on a highly-available object repository for use in a heterogeneous
distributed network. In addition, we continued our work on replication methods and atomic
transactions.

9.2 Replicated File System

Our replicated file system has the following goals:

1. It should provide the same semantics as an unreplicated NFS server.

2. It should be usable with whatever NFS client code exists at the client machine.

3. We want to avoid having our system depend on proprietary information. Instead, our
code is sandwiched between NFS and the Unix file system kernel. It is called by the
NFS code at the server, and in turn makes calls on low level file system operations.

4. We want to continue to provide service even when one replica is crashed or inaccessible,
but have only two copies of each file.

5. We want to achieve reliability at least as good as a single server.

6. We want to achieve performance as least as good as a single server. In particular, the
delay observed by the client in doing a read or write should be no greater with our
service than with a single server.

We plan to use a primary copy method as our replication technique. Our method is based
on our earlier work on primary copy methods in transaction systems [236], but we adapted
this approach to match the needs of this application. Most importantly, we take advantage
of the fact that we need not support general atomic transactions. Instead, each individual
file system operation must run atomically, but support for combining operations into multi-
operation transactions is not needed.

Each file system is assigned to a pair of servers; one is the primary and the other is the
backup. The roles assigned to different servers can change when there are failures, and at
this point, the third server will be involved; failures are discussed further below. Different
file systems can be assigned to different pairs; in this way we spread the load among the
servers.

In a primary copy method, client requests are sent to the primary, which decides what to
do and communicates with the backup as needed. Running single operation transactions
requires a two phase protocol. In phase 1, the primary informs the backups about the
operation. When the backups acknowledge receipt of this information, the operation can
commit. At that point the primary can return information to the client; the backups are
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informed about the commit later in the background (this is phase 2). Phase 1 information
must reach a sufficient number of backups so that we can guarantee that the information
survives subsequent failures; in a system like ours that is intended to survive a single node
failure, just one backup is needed.

The primary maintains a log in volatile memory in which it records information about
client operations. The log is simply a sequence of entries; later entries represent more
recent operations. Typically some entries are for operations in phase 1, while others are for
operations that have committed. The primary distinguishes between these by maintaining
the CP (the commit point); this is the index of the latest committed entry. Operations
commit in entry order.

Operations that do not involve modifications to the file system are done entirely by the
primary; no log entries are created for them and no communication with the backup is
needed. (We discuss how we guarantee proper serialization for such operations later in this
section.) For a modification operation, the primary sends the logged information to the
backup. When the **ack arrives, the primary advances its CP (backups do acks in log entry
order). The primary can work on many user requests in parallel; an operation must be
delayed only if it conflicts with an earlier, uncommitted operation.

Operations are not applied to the primary's file system until after they commit, and this
writing occurs in the background. Each server is equipped with an uninterruptible power
supply (UPS), so that it will be able to write its log to disk in the case of a power failure.

The backup records information received from the primary in its volatile log. The primary
also informs it about the current CP in each message, and the backup records this information
in its CP. Like the primary, the backup moves committed information to its file system in
the background.

The information in an entry includes more than just the arguments sent by the client. For
example, the primary will choose the time at which a write operation is to occur, and log
this information. By logging sufficient information, we can insure that the effect of applying
a client operation to the file system is identical at both the primary and the backup. In
addition, we can guarantee that operations are idempotent: even if an operation is performed
a second time (which can happen when there is a failure), the effect is the same as if it
happened just once.

Information is removed from the log when it is known to be recorded in the file systems at
both the primary and backup. Each server maintains a counter called the AP (the application
point); all entries with index less than or equal to the AP have been applied to the file system.
Servers send their APs in messages; a log entry can be discarded when it is known to be
earlier than both APs.

As mentioned, each file system is the responsibility of a pair of workers; the third server
acts as a "witness" for that system [213][2431. If one of the workers becomes inaccessible,
the other worker and the witness carry out a view change [103][102]. The remaining worker
will be the primary of the new view and the witness will be the backup. Such a "promoted"
witness keeps a log just like a regular backup, but it does not have a copy of the file system,
so it does not apply committed requests to the file system. Instead, it keeps the earlier
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entries in the log on disk. (The worker in a view with a promoted witness can discard entries
in its log as soon as they have been recorded in its file system, and as soon as that part of
the witness' log is on the witness' disk.) We are not yet certain what we will do if the view
lasts long enough that the promoted witness' log becomes too big to store. One possibility
is to keep most of the witness' log on tape.

The view change algorithm guarantees that any modification operation that completed (i.e.,
that returned to the client) will be recorded in the system state. In addition, operations that
did not return may also survive into the new state; these are operations that made it to a
backup, but where the primary of the previous view had not yet notified the client.

As mentioned, read operations are done locally at the primary. This can lead to a serialization
problem if a new view has formed but the old primary does not know about it. In that case,
a write operation that committed in the new view may not be reflected in the result of the
read returned to the client, even though the client may know that the write has happened.
To avoid this serialization problem, we make use of loosely synchronized clocks [226] to define
"time windows" during which a view change will now happen. Each message sent by the
backup to the primary contains a time equal to its clock's time + 6; here 6 is on the order
of a few seconds. This time represents a promise by the backup not to start a new view
until that time has passed. The primary needs to communicate with the backup about a
read operation only if the time of its local clock is greater than the promised time -E, where
E is the clock skew. When a new view starts, it must be delayed until the time of the new
primary's clock is greater than the promised time of the backup. In this way, we guarantee
that there cannot be a write that committed in the new view and that should occur before
a read in an earlier view.

9.3 Object Repository

The object repository has two goals:

1. It is intended to provide a convenient medium for sharing of information among pro-
grams written in many different programming languages.

2. In addition, it will provide support for the construction and execution of distributed
programs. Components of these programs can be implemented in different program-
ming languages; communication will occur through the repository.

We identified requirements for the system in support of these goals. For the first goal, we
believe the following requirements are important:

1. The repository should store information as objects, and objects should be able to refer
to one another.

2. Each object can be accessed only by calling operations of its type. Mechanisms that
allow users to define new types must be provided.
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3. All accesses to objects happen within atomic transactions, so that the repository can
maintain multi-object consistency constraints.

4. The repository must provide database functionality. In particular, fast access to large
collections of objects is needed.

5. The repository should provide reliable persistent storage: with high probability, it will
guarantee to preserve information entrusted to it.

6. The repository should provide highly available storage so that whenever a client needs
to access an object, it will be able to do so with high probability.

7. The repository must be scalable in many dimensions: object sizes, number of ob-
jects, number of clients, size of network (e.g., local area network vs. geographically
distributed).

8. The repository must provide a security and protection mechanism.

In addition, the repository must perform well, but it is unclear at this point what kind of
performance can be expected from such a system.

These requirements also apply to the second goal (with the possible exception of database
functionality). In addition, to support this goal we need to provide a way for clients to
communicate via the repository. We have in mind here some way for a client to "post" a
request for service so that servers for that service can find out about the request in a timely
manner. We note that this model of computation differs from the more conventional one
of remote procedure calls (it bears some similarity to the Linda model [116]). It offers two
advantages over RPCs: reliable communication in spite of client and server failures, and
good support for allowing multiple clients to communicate with multiple servers.

In the remainder of this section we describe the semantics of the object universe provided
by the repository. The universe contains objects that clients can share. Each object has
a unique name (an object identifier, or oid) and a value. Clients can identify objects by
providing their oids, and objects can refer to one another using oids.

An object also has a type that determines the set of operations that can be applied to it.
The repository guarantees that objects are accessed only by means of the operations of their
type. Thus, these operations are the only way that the objects' values can be observed or
modified.

The repository provides a rich set of builtin types (e.g., integers, booleans, characters) and
constructors (e.g., arrays, records, unions). Sets will be provided as a builtin constructor,
and clients can cause indexes to be provided for sets, to speed up queries. (We may extend
this ability to "set-like" constructors.) In addition, users can define new abstract types for
the repository. We are currently working on a method to allow efficient maintenance of
indexes on sets where the objects in the set are of abstract type.

Clients of the repository interact with it by invoking operations on its objects. These calls
(from clients to the repository) follow call-by-value semantics. Arguments and results are
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usually oids. For example, a call to add an employee to a set of employees would take the
oid of the set and the oid of the employee as arguments.

However, sometimes actual values of objects are needed. For example, suppose one wanted
to add the number ten to an array of integers. While ten is conceptually an object in the
repository, it hardly makes sense to require a client to know what ten's oid is. Instead,
along with oids, it must be possible to use values as arguments and results. For a given type
T in the repository, T can have an external representation, ext(T); this is a description of
the format of the data that a client will receive (when reading the value) or provide (when
specifying a value). The external representation is similar to a message representation used
for communication in distributed system [145][199]. It differs from the way the object is
represented within the repository, and also from the way the value will be represented in the
client program. Typically, translations are provided on both ends: the internal representation
is encoded to produce the external representation by the provider of the value, and the
external representation is decoded to produce the internal representation used by the receiver.

Within the repository, if the definer of type T provides an encode routine from T to ext(T),
then it is legal to return result values of type T to client programs. If the definer provides
a decode routine from ext(T) to T, then it is legal to accept argument values of type T
from client programs. The simple builtin types (integers, reals, characters, etc.) will provide
encode and decode routines; thus, like most object repositories that use an abstract type
approach, simple values can be used as arguments and results. Unlike most other object
repositories (e.g., Encore [268]), values of user-defined type can also be arguments or results,
provided the type has the encode or decode routine.

The types of objects in the repository are language-independent and a way is needed for
describing them that is independent of any programming language (such as the one used to
implement them). This can be accomplished by providing a "type description" that defines
the names and signatures for the type's operations and also the external representation if
the type is to be transmitted as a value. The signatures will be defined in terms of other
types known to the repository. In addition, the definer needs to give a specification so
that programmers who wish to use objects of the new type can understand its meaning.
The important point to notice here is that all of this can be done without defining an
implementation for the new type, and the information is independent of the programming
language that will be used to implement the type. Thus, abstract data types provide a
means for programs in different languages to communicate.

To provide good performance, we will allow clients to invoke several operations in one call;
this facility is needed, for example, to run queries efficiently. We have not yet decided on
how powerful the language for defining such "combined operations" will be (e.g., whether it
will just provide expressions, or whether general programs can be written). All operation
calls must take place within atomic transactions; a transaction can contain one or more calls.

In addition to calls, we will also provide a means for clients to post rIlle-f _ for service,
and to request notification when such requests arrive. We have not yet decided how this
mechanism will work.
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9.4 Disconnected Actions

Boaz Ben-Zvi has completed his Master's thesis on disconnected actions. This work assumes
the nested transaction model supported by Argus [200]. A topaction is a transaction that
has no parent; when it commits, its results become permanent. An action is allowed to
create subactions, whose commits are relative to the parent: when a subaction commits, its
effects become visible to the parent, but if the parent aborts later, this undoes the effects of
the subaction. In Argus, a parent action stops running when it creates a subaction, and all
subactions must terminate before it is allowed to continue running.

Disconnected actions are subactions that are allowed to run in parallel with their ancestors;
the only constraint is that all disconnected actions must terminate before their topaction
ancestor is permitted to commit. They are useful to allow lazy propagation of information.
For example, consider a replicated system in which a read or write must be done to three
out of the five replicas. In such a system, writing to more than three replicas can improve
the performance of later reads because the needed information may reside at replicas that
are closer to the reader. However, the transaction doing the write should not need to be
delayed while the writing to the additional replicas occurs. Disconnected actions can be used
to allow the extra writing to go on in the background, while the parent continues to do other
work.

Ben-Zvi worked out the locking and commit rules that are needed to support disconnected
actions. He investigated several different approaches. For example, the commit of a topaction
can be made conditional on some number of a set of disconnected action descendants com-
mitting; if at least that many have committed when the topaction tries to commit, the
topaction commits immediately and any of the disconnected actions that have not termi-
nated are aborted.

9.5 Viewstamp Replication in Argus

Sanjay Ghemawat [117] implemented Oki's viewstamp replication mechanism [235][236] and
measured the performance of the implementation. His work took place within the Argus
system [198][200]. Argus guardians are resilient to node failures because their state variables
are maintained on stable storage [184]. Having resilient guardians supports the construction
of highly reliable systems that, with high probability, do not lose information entrusted to
them. However, it does not support high availability: if a guardian's node is crashed or
inaccessible because of a network failure, clients will be unable to use the guardian.

Ghemawat implemented a version of Argus in which each guardian is implemented as three
replicas. One of the replicas is the primary; the others are backups. All operation calls are
performed at the primary. Whenever a guardian would write some information to stable
storage in the original Argus implementation (e.g., as part of committing a transaction),
the primary sends that information to the backups. In case of a failure of the primary, the
backups perform a view changc [102][1031, and one of them becomes the new primary. In
this way, the guardian as a whole is highly available; its state is also highly reliable provided
each replica has an uninterruptible power supply (UPS) that permits it to write volatile
information to disk in the event of a power failure.
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Top- Orig- Replicated
action inal 1,1 1,3 ,1 f 3,31

Read 40 43 61 43 63
Write 127 50 62 70 82

Figure 9.1: The time (in milliseconds) required to run a topaction consisting of one handler
call. Original refers to the unreplicated system. a,b refers to a replicated system with a
replicas of the client and b replicas of the server.

Ghemawat measured the performance of his system and compared it with that of Argus.
For example, Figure 9.1 shows the performance of topaction that performed a single handler
call that either observed the state or modified it. The figure shows that in the case of
modifications, the new system performs substantially better than Argus; this is because in
Argus the new information must be written to disk, which takes longer than the roundtrip
message required in the new system. In fact, the situation in Argus is actually worse than it
appears, since Argus implements stable storage with a single disk instead of two disks with
synchronous writes (which is what is really needed) [184]. On the other hand, the new system
degrades the performance of reads because our implementation requires a roundtrip message
delay in a case where no disk write is done in Argus. (The "time window" optimization for
the replicated file system discussed in Section 9.2 avoids this delay; with this optimization,
reads should perform the same in the replicated system as in Argus.)

Since the replication scheme requires all replicas to have disks and UPSs, it is probably
not appropriate for use with all Argus guardians. Instead, it should be used for important
services, such as the object repository. In addition, we believe th-t the replication technique
would work well in a stable storage service, which provides highly available and reliable
storage for guardians as a service in a network. We are investigating such an approach and
intend to implement the service and compare its performance with other techniques [85] [77].

9.6 Orphan Detection

Steve Markowitz [221] completed his Master's thesis in which he implemented the "map
server" scheme for doing orphan detection in Argus and compared its performance with the
"deadline" technique.

An orphan is a computation whose results are no longer required. Orphans are undesir-
able because they waste system resources and because they sometimes observe inconsistent
information. Therefore Argus provides a method of detecting orphans so that they can be
destroyed. Our method requires sending orphan-detection information in almost all messages
[202]. Since the information grows without bound, the technique is only feasible if it can
be optimized in a way that keeps the size of messages and the size of the orphan detection
information small.

We developed two techniques for optimizing our basic mcthod. The deadline strategy does
this by limiting the lifetimes of certain entities (such as topactions), which in turn limits
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the time that orphan information must be retained [288]. The map server strategy keeps
the information in a highly available central service; the service is able to do garbage collec-
tion and thus bound the information size, and furthermore, it associates small timestamps
with system states, and these timestamps are sent in messages instead of the information
they identify [202]. The deadline strategy was implemented and analyzed by Nguyen [229];

Markowitz has now done the same thing for the map-server technique. He discovered that

although both techniques work well in small systems, the deadline scheme appears to work
better in large systems because it exhibits better locality.

9.7 Lazy Replication

Rivka Ladin, Barbara Liskov, and Liuba Shrira have continued to work on the replication
method developed by Ladin in her Ph.D. thesis [181]. A paper on this work [182] will appear
in the Proceedings of the Ninth A CM Symposium on Principles of Distributed Computing. In
addition, Liskov and Sanjay Ghemewat constructed a simple implementation of the method
for a particular application, with the goal of determining the cost of the replication tech-
nique. To determine this, we are carrying out experiments that compare the performance
of the replicated service with an unreplicated one for the same application. Preliminary
results indicate that the replicated service provides response times comparable to those of
the unreplicated one; we are working on a study to determine and compare the capacities of
the two systems.

9.8 Avoiding Recursion Deadlock

Eric Brewer and Carl Waldspurger explored issues of locking and serialization in concurrent
object-oriented programming languages. Their work focused on the problem of recursion
deadlock in current actor systems [214][297]. The restrictions on recursion in these systems
hinder the use of abstract modules, and force programmers to rethink algorithms to avoid
recursion. Brewer and Waldspurger developed two mechanisms for solving this problem: a
novel technique using multi-ported actors, and a named threads scheme that borrows from
previous work in distributed computing.
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10.1 Introduction

The Programming Systems Research Group works in two areas: programming language tech-
nology for parallel systems, and distributed database technology for large scale information
systems.

10.2 Community Information

The Boston Community Information System is a large scale information system in use at
over 150 sites in the Boston area. It provides New York Times and Associated Press news
wires to users via digital broadcast (to PCs), remote procedure calls, and electronic mail. We
published a description of our system in Communications of the A CM (see list of publications
below).

Since last year, we doubled the number of users served by the electronic mail component
of the system to over 100. We conducted a survey of the electronic mail users as well as
compiled quantitative data for a forthcoming report.

10.3 FX Programming

The FX programming language incorporates a fundamental compiler technology for par-
allel computers that can be used by a range of existing programming languages without
modification. This compiler technology is based on a new formal technique for statically
scheduling expressions for parallel execution. We are using implementation experience and
experimentation to guide the development of the technology.

10.3.1 Approach

Our approach to parallel computing seeks to develop a new scientific basis for parallel pro-
gram execution that retains the simple semantics present in sequential programming lan-
guages. Our approach is unlike other approaches to parallel computing because it does not
require primitives for explicit parallelism (although it can accommodate them) and because
it does not forbid side effects in programs.

The foundation of our work is an effect system that permits us to statically determine ex-
pression scheduling constraints and thus decompose a program at compile time for parallel
execution. Just as a type system describes what each expression in a program computes, an
effect system describes how each expression computes. For example, an effect system can de-
ternu ne expression side effects (read, write, and initialize regions of memory), control effects
(representing control transfers), and communication effects (between cooperating processes).

Our experimental results with a prototype compiler suggest that effects are a t"-eful way of
discovering and exploiting parallelism in complex programs without burdening the program-
mer. Our experimental methodology is based upon testing our technology on programmers
outside of our own research group by an iterative cycle of language design, implementation,
and test.
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10.3.2 Recent Accomplishments

We completed experiments using our parallel compiler for FX-87 that show between a factor
of two and five speedup under ideal conditions. New systems for type inference, effect
inference and first class modules have been implemented in the context of FX-90, and our
implementations are being used outside of our research group.

In addition, we completed:

* a dialect of FX, in use at other research sites and in an MIT graduate course. Based
upon user feedback, the language has been updated for easier use.

* a prototype FX-90 implementation incorporating type and effect inference: no decla-
rations are necessary to get the benefit of type and effect analysis.

9 an extension of our earlier system of first class modules and static dependent types.

Effects enable a new approach to type systems that permits modules to be treated as

run time values, a first for statically typed languages. Modules can be dynamically
composed to construct new systems. This system has been implemented as part of the

prototype FX-90 implementation.

10.3.3 Plans for FY91

In the following year, we intend to:

* complete FX technology experiments under real conditions on the Encore Multimax
and Connection Machine and publish the experimental results; and

" encourage technology transfer by publishing the complete documentation of FX and

making the implementation widely available.

10.3.4 Technology Transfer

Outgoing technology transfer activity is split into two parts. First, through our scientific
publications and experimental results, we seek to influence other groups to understand and
use the technology we develop. Second, we support the transfer of FX implementations to

interested users. To date, we sent the implementations of FX to approximately three other

university research groups, and we have received feedback from these users.

In addition, we are also working on transferring our distributed database technology, de-

veloped under a previous DARPA contract, to outside firms for commercialization. This
technology is used at over 100 sites world wide.

Incoming technology transfer in the programming language area is facilitated by our constant

interaction with other DARPA contractors, including Stanford, Yale, and CMU.

10.3.5 Other Information

Pierre Jouvelot has joined our research group as a visiting scientist, and is working on

adapting FX technology to the Connection Machine. We hosted many visitors, including

visitors from industry, over the past year and discussed our ongoing research. In September

1990 David Gifford was awarded the Karl Van Tassel Career Development Professorship.
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11.1 Introduction

Spoken language input to computers is a major goal in our research in developing a graceful
human-machine interface. Despite some recent successful demonstrations of speech recogni-
tion capabilities, current systems typically fall far short of human capabilities of continuous
speech recognition with essentially unrestricted vocabulary and speakers, under difficult
acoustic environments. Our approach to this problem is to seek a good understanding of
human communication through spoken language, to capture the essential features of the
process in appropriate models, and to develop the necessary computational framework to
make use of these models for machine understanding.

It is our belief that the development of advanced human/machine communication systems
will require expertise in signal processing, system theory, pattern recognition, and computer
science, built on a solid understanding of speech science and linguistics. We place heavy
emphasis on designing systems that can make use of the knowledge gained over the past
four decades in l1iman communication, with the hope that such systems will one day have a
performance approaching that of humans. Specifically, our approach is based on the following
premises:

* The speech signal contains information regarding the intended linguistic message. It
also contains information on the acoustic environment and the identity and physiolog-
ical/psychological states of the speaker. As far as speech recognition is concerned, the
latter sources of information can be considered as undesirable noise. Robust speech
recognition is critically tied to our ability to successfully extract the linguistic infor-
mation and discard those aspects that are extra-linguistic.

s Past research in spoken language communication has established phonemes as psycho-
logically real units for representing words in the lexicon. Therefore, phonemes and
other equivalent descriptors, such as distinctive features and syllables, are the most
appropriate units to relate words to the speech signal for machine recognition as well.

* While phonemes are discrete abstract linguistic entities, their acoustic realizations in
speech are inherently continuous, reflecting the movement of the articulators from one
position to the next. Many of the acoustic cues for phonetic contrasts are encoded at
specific times in the speech signal. In order to fully utilize these acoustic attributes,
we believe that one must explicitly establish acoustic landmarks in the signal.

o Previous attempts at explicit utilization of speech knowledge have resulted in the
development of systems that are based on heuristic rules. Such efforts typically require
intense knowledge engineering, and as such are often hampered by the lack of a unified
control strategy. As a result, system development is slow, and the performance fragile.
In contrast, we seek to make use of the available speech knowledge by embedding such
knowledge in a formal framework whereby powerful mathematical tools can be utilized
to optimize its use.

e Despite significant advances made in phonetics, phonology, and other aspects of linguis-
tics over the past decades, we still lack a complete understanding of the human speech
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communication process. To deal with our present state of ignorance and the inherent
variability that exists throughout the process, the speech recognition system must have
a stochastic component. However, it is our belief that speech-specific knowledge will
enable us to build more sophisticated stochastic models than what is currently being
attempted, and to reduce the amount of training data necessary for high performance.

The ultimate goal of our research is the understanding of the spoken message, and the
subsequent accomplishment of a task based on this understanding. To achieve this
goal, we must fully integrate the speech recognition part of the problem with natural
language processing so that higher level linguistic and pragmatic constraints can be
utilized.

e The development of a spoken language understanding system will require interactions
with several disciplines in computer science. Parallel computing will be necessary for
real time processing. Efficient algorithms can greatly reduce the search space for the
recognition process. Finally, theories of learning will help the system to adapt to new
speakers, environments, and tasks.

The research projects in the Spoken Language Systems Group fall into several areas. First,
a number of basic research topics are being explored. These include the formulation and
testing of various computational models for human auditory processing, speech perception,
and natural language processing that are suitable for spoken language understanding. We
are also attempting to quantify the acoustic cues for phonetic contrasts, and the effects of
speaking rate and style on the acoustic properties of speech. Secondly, these research results
are funneled into the development of an experimental spoken language system. Thirdly,
alternative approaches to speech recognition, including the use of artificial neural nets and
strategies derived from vision research, are being explored. Finally, part of our effort is
devoted to the development of the necessary infrastructure, including the development of
speech research tools and databases.

11.2 Research Reports

11.2.1 Continuous Speech Recognition: The SUMMIT System

Recently, we put together a speech recognition system which embodies some of the research
that we have been conducting in automatic speech recognition. The system, which we
call SUMMIT, is intended to serve as a testbed for a segmental-based approach to speech
recognition. In addition, it enables us to explore how speech recognition can be integrated
with natural language processing in order to achieve speech understanding.

The SUMMIT system starts the recognition process by first transforming the speech signal into
a representation that models some of the known properties of the human auditory system
[265]. The representation is illustrated in Figure 11.1(a), for the sentence "Where is the
nearest hospital?" Using the output of the auditory model, acoustic landmarks of varying
robustness are located and embedded in a hierarchical structure called a dendrogram [1181,
as shown in Figure 11.1(b). The acoustic segments in the dendrogram are then mapped
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Figure 11.1: Intermediate representation leading to the recognition of the sentence, "Where
is the nearest hospital?" The display contains: (a) synchrony spectrogram, (b) a dendrogram
describing the multi-level acoustic segmentation, (c) a phonetic recognition network, (d) a
word pronunciation network, and (e) the :icognition result.

to phoneme hypotheses, using a set of automatically determined acoustic parameters in
conjunction with conventional pattern recognition algorithms [2461. The result is a phoneme
network, in which each arc is characterized by a vector of probabilities for all the possible
candidates, as shown in Figure 11.1(c).

Words in the lexicon are represented as pronunciation networks, which are generated auto-
matically by a set of phonological rules. This is illustrated in Figure 11.1(d) for the word
"hospital." Probabilities derived from training data are assigned to each arc, using a cor-
rective training procedure, to r-flmct. the likelihood of a particular pronunciation. Presently,
lexical decoding is accomplished by using the Viterbi algorithm to find the best path that
matches the acoustic-phonetic network with the lexical network. The recognized word string
is shown in Figure 11.1(e).

We recently evaluated SUMMIT's performance in a number of ways. Phonetic classification
performance was evaluated by comparing the labels provided by the classifier to those in a
time-aligned transcription, using 38 context-independent phone labels [302]. This particular
set was selected because it has been used in other recent evaluations within the DARPA
communi y. For a single speaker, the top-choice classification accuracy was 77%. The correct
label is within the top three nearly 95% of the time. For multiple and unknown speakers,
the top-choice accuracy is about 70%, and the correct choice is within the top three over
90% of the time. Figure 11.2 shows the rank order statistics for both the speaker-dependent
and speaker-independent cases.
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Figure 11.2: Rank order statistics for the current phone classifier on a speaker-independent
task. There are 38 context-independent phone labels: 14 vowels, 3 semivowels, 3 nasals, 8
fricatives, 2 affricates, 6 stops, 1 flap, and one for silence.

Word accuracy for the SUMMIT system was evaluated on the DARPA 1000-word Resource
Management task t301]. Two different speaker-independent test sets provided by NIST, con-
sisting of 150 and 300 sentences, respectively, were used [241]. The SUMMIT system achieved
a word accuracy of 87.1% and 86.4% on the two test sets, respectively, using the designated
word-pair grammar with perplexity of 60, and approximately 70 context-independent phone
models. SUMMIT's performance compares favorably with systems that are based on hidden
Markov modeling, when evaluated on the same data and using a similar number of phone
models [186]. Since other researchers have been able to improve their system's performance
by increasing the number of models to accommodate context-dependency, we expect that
we can similarly improve SUMMIT's performance.

11.2.2 Natural Language Processing: The TINA System

A new natural language system, TINA, was developed in our Group [266] which integrates
key ideas from context free grammars, Augmented Transition Networks (ATN's) [296], and
Lexical Functional Grammars (LFG's) [64]. TINA is specifically designed to accommodate
full integration between speech recognition and natural language processing, and has a set
of features reflecting this philosophy.

The grammar begins with a set of context-free rewrite rules, which are augmented with
parameters to enforce syntactic and semantic constraints. These rules are converted auto-
matically to a network form, leading to extensive structure sharing. All arcs in the network
have associated probabilities, which can be trained automatically from a set of parsed sen-
tences. The parser uses a best-first search strategy. Control includes both top-down and
bottom-up cycles, and key parameters are passed among nodes to deal with long-distance
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movement and agreement constraints. The probabilities provide a natural mechanism for
exploring more common grammatical constructions first. TINA also includes a new strategy
for dealing with movement, which can handle efficiently nested and chained gaps, and rejects
crossed gaps.

Over the past year, TINA has been ported to the DARPA 1000-word Resource Management
task. We used the 791 designated training sentences and 200 (unseen) test sentences to
evaluate our parser for coverage and perplexity. The training was a two-step process. We
first expanded the coverage of the grammar until it could handle all of the 791 training
sentences (100% coverage). We then built a new subgrammar from these sentences, with
probabilities on arcs updated according to their usage within the training set (any rules
that only appeared in the TIMIT domain were automatically discarded). This resulted in
a grammar that was tightly defined for the RM task. We then tested this grammar for
coverage and perplexity on the 200 test sentences. The results were that 84% of the test
sentences were parsable, and the perplexity was 368 if all words that could follow each word
were considered to be equally likely. The surprising result was that the perplexity dropped
9-fold when arc probabilities were incorporated into the measurement, down to 41.5. We also
looked at the parses to establish the depth from the top of the correct parse. We found that
88% of the training sentences gave a correct parse as the first choice; this number increased
to 90% for the test sentences. Both sets gave the correct parse within the top three over
98% of the time.

11.2.3 Spoken Language Understanding: The VOYAGER System

Over the past year, we initiated an effort in spoken language understanding. The project is
motivated by our belief that many of the applications suitable for human/machine interaction
using speech typically involve interactive problem solving. That is, in addition to converting
the speech signal to text, the computer must also understand the linguistic structure of a
sentence in order to generate the correct response.

In order to explore issues related to a fully-interactive spoken language system, we selected
a task in which the system knows about the physical environment of a specific geographical
area, and can provide assistance on how to get from one location to another within this
area. The system, which we call VOYAGER, can also provide information concerning certain
objects located inside this area. The current version of VOYAGER focuses on the geographic
area of the city of Cambridge between MIT and Harvard University, as shown in Figure 11.3,
and can answer a number of different types of questions about certain hotels, restaurants,
hospitals, and other objects within this region.

VOYAGER is made up of three components. The first component, SUMMIT, converts the
speech signal into a set of word hypotheses. The natural language component, TINA, then
provides a linguistic interpretation of the set of words. The parse generated by the natural
language component is then transformed into a set of query functions, which is passed to
the backend for response generation. The backend is an enhanced version of the direction
assistance program developed by Jim Davis of the Media Laboratory at MIT. The response
generator maintains some knowledge about recent discourse history, which allows it to re-
spond appropriately to queries such as "How do I get there?" Currently, VOYAGER can
generate responses in the form of text, graphics, and synthetic speech.
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VOYAGER

Figure 11.3: A display showing the geographical region known to the VOYAGER system.

As of now, VOYAGER has a vocabulary of over 300 words, and it can deal with about half a
dozen types of queries, such as the location of objects, simple properties of objects, how to
get from one place to another, and the distance and time for travel between objects. Within
this limited domain of knowledge, it is our hope that VOYAGER will be able to handle any
reasonable query that a native speaker is likely to initiate. As time progresses, VOYAGER's

knowledge base will undoubtedly grow.

In order to evaluate VOYAGER's performance, we collected a corpus of some 5000 sponta-
neously spoken sentences from 100 speakers. The system was trained on approximately 70%
of the data and tested on 10%. Errors in the system can occur in several ways; the recog-
nizer can mis-recognize a word, the natural language system can fail to generate a parse, an
unknown word can appear, or a query can be outside of VOYAGER's domain. All in all, the
system could correctly execute approximately 50% of the queries during a recent evaluation.

The current implementation of VOYAGER makes use of a Macintosh II, augmented with DSP
boards, for data capture and signal processing. Subsequent phonetic classification, lexical
access, linguistic analysis, and response generation are all performed on a Sun-workstation.
The overall response time is approximately 15 times real time. Refined algorithms, together
with the availability of faster workstations and more powerful signal processing chips should
enable the current VOYAGER implementation to run in real time in the future.

11.2.4 Phonetic Recognition Using Multi-layer Perceptrons

Over the past two years, we have been experimenting with the use of artificial neural networks
(ANN) for vowel classification. Our work was motivated by the belief that such networks
might offer a flexible framework for us to utilize our improved, albeit incomplete speech
knowledge. Using the output of Seneff's auditory model as the input to the multi-layer
perceptrons (MLP) with one hidden layer, classification accuracy ranging from 62% to 100%
were achieved under varying experimental conditions. These results compared favorably to
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those of human listeners and traditional pattern classification techniques. These experiments
helped us gain a better understanding of the behaviors of this particular kind of ANN along
many dimensions, including the effects of training procedures, the nature of the hidden layer,
and the use of adaptation techniques on classification accuracy. Some of these results have
been documented in several publications [192], Leung-88b, Leung-89.

More recently, we have expanded our earlier work by moving towards the classification and
recognition of all phonemes in American English [193]. By incorporating novel normalization
and training procedures, we were able to obtain a context-independent classification accuracy
of 74% for 38 phones, using as input a set of 80 automatically determined acoustic attributes.
The same system configuration achieved a phonetic recognition accuracy of 55%, including
substitution, insertion, and deletion errors. We are in the process of incorporating the ANN
phonetic recognition module into the SUMMIT system and evaluating its impact on overall
system performance.

11.2.5 Isolated Word Recognition over Telephone Network

Over the past year, we initiated an effort to develop a small-vocabulary, isolated-word recog-
nition system. The focus of this research is to explore how our phonetically-and segmentally-
based approach will fare with the bandlimited and distorted speech transmitted through local
and long distance telephone networks, spoken by real users.

As a first step, we implemented a system that recognizes 25 city names, and have performed
a number of recognition experiments using data from real users over dial up telephone lines
collected by NYNEX. Preliminary evaluation of our system on such realistic data showed
that a top-choice accuracy of 95% can be achieved with a 20% rejection criterion. We are
also using this task as a framework in which to explore the use of unsupervised learning
techniques to enable the automatic expansion and modification of the vocabulary.

11.3 Student Reports

Nancy Daly

Nancy is pursuing a doctoral thesis on prosodic aids for speech recognition. Prosody is the
stress, rhythm, and intonation of speech. While the importance of prosodic information
has long been documented for human speech communication, automatic speech recognition
systems developed thus far have all but ignored this source of information. The purpose
of her thesis research is to see how prosodic information could be incorporated into speech
recognition systems to improve their performance.

Currently, Nancy is investigating the problem of distinguishing yes/no questions from "wh-
" questions and other types of sentences. Her investigation of this problem spans several
directions. First, she is attempting to document how this type of prosodic encoding is
achieved by a talker, by asking listeners to categorize questions during listening tests. Next,
she is investigating the intonation contour in order to establish whether a terminal high
boundary tone is actually present for yes/no questions. Finally, she is interested in devising
algorithms for automatic extraction of acoustic attributes, leading to the detection of these
high boundary tones.
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David Goddeau

Dave joined the group as a graduate student in September 1989. During the summer, he
worked for the group porting the SUMMIT auditory model to C, and then optimizing to run
on a DSP board. During the fall term, he contributed to porting other sections of the system
to the DSP board and became familiar with the computing environment of the group. He is
exploring several ideas in his search for a PhD thesis topic. The current focus of his work is
the detection of unknown words in a human/machine spoken dialog.

Lee Hetherington

Lee joined the group in September 1989. He spent the fall term becoming familiar with the
group's computational facilities and attended spectrogram reading classes. He is searching for
a Doctoral thesis topic in the area of adaptation and learning for improved speech recognition.
Lee is currently working on the problem of adding new words to the vocabulary of SUMMIT.
Specifically, he will be working on unsupervised learning of the pronunciation network and/or
the phonetic models when a new word is added to the vocabulary. The goal is to enable the
recognizer to improve with use.

Rob Kassel

Rob just completed his Master's thesis entitled "An Information-Theoretical Approach to
Studying Phoneme Collocational Constraints." Linguistic constraints are well known and
well exploited at the syntactic and semantic levels. Past work in phonology has also suggested
the existence of strong constraints of phoneme sequences, which are best expressed in terms
of phonological equivalence classes. However, these constraints are typically stated introspec-
tively. This research studied the co-locational constraints of phonemes using a data-driven,
self-organizing approach. Even if they are quantified, the equivalence classes are usually
pre-defined by linguists. Information-theoretic metrics are used to discover phonological
equivalence classes that can best capture the constraints. A major goal of his research was
to coiapare the constraining power of these equivalence classes with those of the distinctive
features as suggested from phonological theory.

Jeffrey Marcus

Jeff continued work on his thesis, tentatively eatitled "Incorporating Units of Different Sizes
in Segment-based Speech Recognition." One goal of the thesis is to extend current tech-
niques for combining statistical estimates of recognizer model parameters made on phonetic
units of various sizes, such as phones, diphones and words. Another goal is to incorporate
measurements made over acoustic segments of various sizes, for instance over phone-like and
diphone-like units. This contrasts with most current speech recognizers, which make mea-
surements over constant-duration time frames. Towards these ends, Jeff worked for some
time on refining an acoustic segmentation algorithm with the aim of obtaining segments
which map to phonetic units in a predictable manner. Over the next year, he will be fo-
cusing on the modeling of function words, such as "the," "are," etc. from the VOYAGER

database, using the techniques mentioned above.
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In addition to this ,esearch, he also worked on the problem of statistically comparing the
performance of two speech recognizers. He presented this work at the European Conference
on Speech Communication and Technology.

Helen Meng

Helen is interested in designing and implementing a novel representation of speech using
distinctive features for speech recognition. Distinctive features are a small set of orthogonal
properties used to classify both phonemes and other levels of phonology and phonetics.
The compact inventory of distinctive features possesses immense descriptive power, and can
concisely represent speech variations such as coarticulatory phenomena, contextual effects
as well as inter-speaker differences. It is believed that these properties of distinctive features
are extremely beneficial for automatic speech recognition.

Recent research has focused on the comparison of auditory-based acoustic representations.
The objective of this work is to find a favorable front end for future distinctive feature
extraction. The mel-based signal representations have been implemented, and compared
with Seneff's auditory model on the basis of vowel classification, using the artificial neural
network developed by Hong Leung. Further comparisons will be made on the basis of acoustic
segmentation, and the acoustic correlates of the distinctive features will be characterized and
quantified for the purpose of feature extraction. This line of investigation will lead to the
transformation of an acoustic representation into a novel representation in terms of distinctive
features, and the resulting recognition performance will be evaluated.

Partha Niyogi

Since joining the group in September 1989, Partha has been familiarizing himself with the
research activities of the group (mainly through reading papers) and its computational fa-
cilities. In addition to his coursework, he has been attending spectrogram reading classes.

Partha has also been searching for a suitable Master's thesis topic. In particular, he is
investigating how speaker-independent phonetic recognition performance can be improved
by considering the correlation in the acoustic space of different phonemes due to vocal tract
constraints. He will explore both clustering and normalization techniques to reduce the
variance of acoustic parameters, thus leading to better recognition performance.

John F. Pitrelli

John just completed his Ph.D. thesis entitled "Hierarchical Modelling of Phoneme Duration:
Application to Speech Recognition." Duration is potentially a strong cue for certain phone-
minc distinctions, including inherently long vs. short vowels, and voiced vs. unvoiced obstruent
consonants. Phoneme durations are affected, though, by an abundance of factors ranging
from detailed phonetic context effects to syntax and semantics. Our lack of understanding of
these effects and their interactions hinders our use of potentially useful duration information
to the extent that most speech recognition systems currently use only rudimentary duration
models or use time-warping procedures, which distort duration information.

His approach to the duration modeling problem was to use a hierarchical model to account
for discrete-valued factor variables, such as phonetic context features and syntactic-unit-final
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lengthening. Research was focused on three areas. One was to search for ways to measure
speaking rate which would be suitable for use in a duration model for recognition, and to
explore the effects of speaking rate on phoneme duration. The second was speech synthe-
sis where experiments involved replacing the duration model in a speech synthesizer with
the hierarchical model, and performing perceptual tests to determine whether naturalness
and/or intelligibility were improved. The third area was recognition experiments designed
to determine how much the duration model improved recogiizer performance. John pursued
two lines of experimentation in this area. One was to incorporate his duration model into
an existing recognizer, to assess how much duration information adds to the performance
achieved using other information. The other was to measure the potential discrimination
power of duration information by evaluating a duration-only classifier on particular distinc-
tions associated with duration effects.

Michal Soclof

Michal just completed her Master's thesis entitled "A Comparison of Spontaneous Speech and
Read Speech in Human-machine Problem Solving Dialogues." The purpose of her research
was to analyze and quantify the phenomena that occur in spontaneous speech, and compare
them to read speech. Spontaneous speech is defined in this context as speech generated by a
person when talking to a computer in a problem solving situation, as opposed to when talking
to another individual. The ultimate goal of an interactive human-machine interface through
speech is to enable the user to communicate with the machine using spontaneous speech.
In order to build this type of system, it is necessary to study the acoustic and linguistic
variations that occur in goal-directed, spontaneously uttered speech. The phenomena that
occur in spontaneous speech include agrammatical and ill-formed sentences, false starts, and
non-speech vocalizations.

In order to conduct this study, a large corpus of spontaneous utterances was gathered. The
corpus also included a read version of each of the spontaneous sentences. The analysis of
the data was divided into three categories: frequency analysis, natural language analysis,
and acoustic/phonetic analysis. The frequency analysis included studying the frequency
of occurrence in read and spontaneous speech of non-speech vocalizations such as mouth
clicks, filled pauses, unfilled pauses, and false starts. The natural language analysis entailed
finding the location of the spontaneous phenomena within the sentence structure. The
acoustic/phonetic analysis was done on the sentence, word and phoneme level. This included
studying the duration of the read vs. spontaneous sentences, and the duration of filled and
unfilled pauses.
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[10] H. Leung and V. Zue. Phonetic classification using multi-layer perceptrons. In Proceed-
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Thesis Completed

[1] R. Kassel. An Information-theoretical Approach to Studying Phoneme Collocational
Constraints. Master's thesis, MIT Department of Electrical Engineering and Computer
Science, May 1990. Supervised by V.W. Zue.
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[21 A. Lim. A New Approach to Speech Recognition in the Presence of Co-channel Speech
Interference. Master's thesis, MIT Department of Electrical Engineering and Computer
Science, May 1990. Supervised by G. Kopec and V.W. Zue.

[3] K. Ng. A Comparative Study of the Practical Characteristics of Neural Network and
Conventional Pattern Classifiers. Master's thesis, MIT Department of Electrical En-
gineering and Computer Science, May 1990. Supervised by R.P. Lippmann and V.W.
Zue.

[4] J. Pitrelli. Hierarchical Modelling of Phoneme Duration: Application to Speech Recog-
nition. PhD thesis, MIT Department of Electrical Engineering and Computer Science,
May 1990. Supervised by V.W. Zue.

[5] M. Soclof. A Comparison of Spontaneous Speech and Read Speech in Human-Machine
Problem Solving Dialogues. Master's thesis, MIT Department of Electrical Engineering
and Computer Science, May 1990. Supervised by V.W. Zue.

[6] D. Whitney. Building a Paradigm to Elicit a Dialog with a Spoken Language System.
Bachelor's thesis, MIT Department of Electrical Engineering and Computer Science,
May 1990. Supervised by V.W. Zue.

Theses in Progress

[1] N. Daly. Prosodic Aids to Speech Recognition. PhD thesis, MIT Department of Electri-
cal Engineering and Computer Science, expected 1991. Supervised by V.W. Zue.

[2] D. Goddeau. Detecting and Parsing Unknown Words in Speech Understanding Systems.
PhD thesis, MIT Department of Electrical Engineering and Computer Science, expected
1991. Supervised by V.W. Zue.

[3] I.L. Hetherington. Supervised and Unsupervised Incremental Training in Speech Recog-
nition. PhD thesis, MIT Department of Electrical Engineering and Computer Science,
expected 1992. Supervised by V.W. Zue.

[4] J. Marcus. Building Acoustic Models of Words and Phrases for Speech Recognition
Using Variable-sized Lexical and Acoustic Units and a Data Analytic Approach. PhD
thesis, MIT Department of Electrical Engineering and Computer Science, expected 1991.
Supervised by V.W. Zue.

[5] H. Meng. A Comparison of Auditory-based Representations of Speech and the Use of
Distinctive Features as an Intermediate Representation for Automatic Speech Recogni-
tion. Master's thesis, MIT Department of Electrical Engineering and Computer Science,
expected 1990. Supervised by V.W. Zue.

[6] P. Niyogi. A Study of the Correlation in Acoustic Space of Different Phonemes Due
to Vocal Tract Constraints. Master's thesis, MIT Department of Electrical Engineering
and Computer Science, expected 1991. Supervised by V.W. Zue.
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Talks

[1] V.W. Zue. Yesterday, today, and tomorrow: on the state of voice I/O technology.
Keynote Address made at the at the Annual Meeting of the American Voice Input/Output
Society, Newport Beach, CA, September 1989.

[2] V.W. Zue. MIT's Voyager spoken language system. Distinguished Lecture given at
Oregon Graduate Center, Beaverton, OR, November 1989.

[3] V.W. Zue. Computers that listen: recent progress at MIT. Lecture given at MIT EECS
Colloquium, November 1989.

[4] V.W. Zue. Dennis Klatt's contribution to automatic speech recognition. Invited lec-
ture given at the 1 1 8

h Meeting of the Acoustical Society of America, St. Louis, MO,
November 1989.

[5] S. Seneff. A natural language system for spoken language applications. Invited lecture
given at the ATR Symposium on Basic Research for Telephone Interpretation, Kyoto,
Japan, December 1989.

[6] V.W. Zue. Future directions for spoken language research. Invited lecture given at
the ATR Symposium on Basic Research for Telephone Interpretation, Kyoto, Japan,
December 1989.

[7] V.W. Zue. Computers that listen: recent progress at MIT. MIT ILO Seminar, Tokyo,
Japan, February 1990.

[8] V.W. Zue. Assessment of speech I/O technology. Keynote Address given at the at the
Citicorp-TTI Voice Technology Seminar, Santa Monica, CA, March 1990.

[9] V.W. Zue. Computers that listen: recent progress at MIT. Lecture given at the MIT
Industrial Liaison Program and MIT International Financial Services Research Center
Seminar, Cambridge MA, May 1990.
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12.1 Objectives

Our main goal is to develop techniques and tools that will facilitate the efficient production of
high quality software. Most of our attention is concentrating on exploring the role of formal
specifications in building programs from components, encouraging module-level reuse, and
allowing early detection of design errors.

12.2 Approach

Effective programming involves choosing abstractions that can be combined to solve a prob-
lem, specifying their meanings, and implementing them. It is better to think about combining
abstractions than about combining implementations because: 1) specifications are easier to
understand than implementations, 2) software is easier to maintain if it relies only on prop-
erties guaranteed by specifications, and 3) components are more likely to be reusable if a
distinction is made between abstractions and implementations.

The Larch family of specification languages is unique in the way it supports a two-tiered
definitional approach to specification. Each specification has components written in two
languages: one designed for a specific programming language and another independent of
any programming language. The former are called Larch interface languages, and the latter
the Larch Shared Language (LSL). Larch allows one to specify reusable theories (at the
LSL-level), as well as interfaces to actual software components.

The Larch style of specification emphasizes brevity and clarity rather than executability.
To make it possible to test specifications without executing or implementing them, Larch
permits specifiers to make claims about logical properties of specifications and to check
these claims at specification time. The emphasis in our tools is thus on reasoning at the
component level, rather than at the code level. The most interesting tool is LP, a system
used for reasoning about semantic properties of specifications.

Our work on parallel programming is related to our work on specifications in that it em-
phasizes module-level programming. Various methods have been proposed to address the
problem of writing and reasoning about parallel programs, but these tend to address only
single module programs. Notions of module composition are missing, and as a result, a style
of program development is encouraged in which the entire program is designed and imple-
mented as a single unit. Conversely, methods that have been developed for "programming
in the large" of sequential programs are not applicable, and attempts to extend them to
parallel programs often result in programs that exhibit very little real concurrency. Our goal
is to be able to decompose parallel programs into independently specifiable units without
prohibiting efficient implementations.

12.3 Recent Accomplishments

We released version 2.0 of the LP system for reasoning about specifications. LP is being
used for reasoning about specifications of software components at MIT, CMU and Digital
Equipment Corporation's System Research Center (DEC SRC) and for reasoning about
circuit descriptions at DEC SRC and the Technical University of Denmark.
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We completed a description of how to translate and formulate the necessary semantic checks
for all of LSL using LP. This will make it possible to begin serious experiments with the use
of LP in debugging specifications.

We developed a novel approach to designing and implementing efficient, yet modular, parallel
programs. This approach was used to implement one small and one reasonably large parallel
program.

12.4 Plans for Current Year

We expect to complete the design and preliminary implementation of a Larch/C interface
language. By the end of the fiscal year, we hope to have used it to specify an interesting set
of reusable components that can be used by C programmers.

We plan to write up our approach to building parallel programs. This will include a careful
evaluation of the performance of the programs we have built using it, and a discussion of
the strengths and weaknesses of the approach.

We plan to enhance LP by adding efficient special purpose reasoning procedures. These will
be aimed at specific theories that have proved critical to current users of LP.

We plan to complete a new LSL implementation and connect it to both LP and the Larch/C
processor.

12.5 Collaboration Outside LCS

We have collaborated for many years with researchers at DEC SRC on the design of the Larch
family of languages. This collaboration will continue. SRC has been a primary Beta site for
testing our software. They contributed many valuable suggestions that were incorporated in
the current release of LP. Finally, we have worked with SRC on the specification of threads.

We have been working with researchers at CMU on the design of Larch/C. Researchers at
CMU have used Larch to specify a variety of software components. They have also used LP
to reason about those components.
Researchers at the Technical University of Denmark have used LP to reason about descrip-
tions of circuits. They currently have software that allows them to generate input to a

fabrication facility from descriptions written in a high level circuit description language.
They are currently writing a compiler to compile descriptions written in their language into
input suitable for LP (up to now the translation has been done by hand). Last summer they
fabricated a chip that was verified, using LP.
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13.1 Introduction

The MIT Theory of Computation (TOC) group is one of the largest theoretical computer
science research groups in the world. It includes faculty, students, and visitors from both the
Electrical Engineering and Computer Science Department, and the Applied Mathematics

Department.

The principal research areas investigated by members of the TOC Group are:

" algorithms: combinatorial, geometric, graph-theoretic, number theoretic;

" cryptology;

" computational complexity;

" parallel computation;

" distributed computation: algorithms and semantics;

" machine learning;

" semantics and logic of prograr,7; and

" VLSI design theory.

13.2 Faculty Reports

Baruch Awerbuch

Awerbuch worked on a number of topics related to design and analysis of communication
protocols.

Also, Awerbuch worked on many specific problems in dynamic networks. Together with
Shavit and Mansour [28], Awerbuch discovered the first polynomial solution to the end-to-
end communication problem. This is one of the basic network problems; it was conjectured in

[3] that it has no polynomial solution. Together with Goldreich and Herzberg (Technion), [27]
he developed a quantitative framework for analyzing performance of broadcast protocols in
dynamic networks. Together with Kutten (IBM) and Cidon (IBM), he discovered an efficient
algorithm for maintaining topology [25] in a dynamic network. In [241, those techniques

have been modified to yield efficient control mechanisms for new generation, fast hardware-
switched networks developed in IBM.

Together with Goldberg (Stanford), Luby (ICSI), and Plotkin (Stanford) he found a new
technique [26] for removing randomness from distributed computing that has yielded fast

deterministic algorithms for Maximal Independent Set, A + 1 Coloring and Breadth First
Search. Together with Peleg (Weizmann) and Baratz (IBM), Awerbuch developed a new
framework for cost-sensitive analysis of distributed algorithms [23].

The emphasis in Awerbuch's work is distributed data structures and their application. In
[29], Awerbuch formalized the problem and gave the first solution to the problem of online
dynamic directories, in which both updates and searches are efficient. Also, he showed that
network routing can be performed with compact routing tables, without causing a significant
increase in communication [30].
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Peter Elias

The paper on error-correcting codes under list decoding, which appeared as a Technical
Report at the time of the last progress report, has since been accepted for publication [104].

The work on iterative ,'rr- --correcting coding schemes referred to in the last progress report,
exploring of the effect on performance on reusing the low order check bits after higher order
bits have been used, has led to analytical and simulation results which show that the reuse of
check bits brings performance much closer to channel capacity. That work has been deferred
for most of the past year while the author was pursuing sociological research. A preliminary
report of the sociological work has come out in two parts [279][278], and has been accepted
for publication. Work on the iterative codes will resume during the summer of 1990.

Shafi Goldwasser

Research Topics

Fairness in Distributed Computation

Together with Leonid Levin, we extended some of our previous results on fairness in dis-
tribubed computation started in 1988-89 as outlined below.

In 1988-89, Goldwasser together with Beaver [391 investigated the problem of performing
a distributed computation in a network with broadcast channels and any number of faulty
processors. It was shown how the existence of an oblivious transfer protocol is a necessary
and sufficient condition to compute any polynomial time boolean function defined on the
processors private inputs privately, correctly, and with a novel property: fairne,. The faulty
processors can find out the function value "if and only if" the non-faulty processors find out
the function value, in a a certain technical probabilistic sense.

It was left open, whether the same is true for non-boolean functions. Together with Levin
[129], we resolve this problem. We show how to compute any function from strings to strings
privately, correctly, and fairly for a definition of fairness extended to the non-boolean case.

In the same work, a set of new definitions for "what should be desired from a fault-tolerant
computation" in presence of malicious faults is proposed. The new definitions are more
general and yet simpler than the ones used previously in this field. We show that our new
requirements are achieved by previous solutions of [128] and others, and imply all properties
required by previous definitions.

Randomness in Interactive Proofs

Interactive proofs [130] are an extension of the classical NP notion of efficient provability
in which nondeterminism is enhanced by two new ingredients: randomness and interaction.
While the verifier in an NP proof is deterministic, the verifier in an interactive proof is
allowed to flip coins. In addition, the prover and the verifier can interact for a polynomial
number of rounds of message exchange. Recent results by Fortnow, Karloff, Lund, Nisan
[114], and Shamir [267] showing that IP=PSPACE suggest that adding the new ingredients
indeed enlarges the class of languages which can be efficiently recognized.
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Furthermore, both of the new ingredients are necessary: if the verifier were not probabilistic,
then the prover could simply simulate all the moves of the verifier on his own and IP would
collapse to NP; in the absence of interaction, IP would collapse to BPP.

An important question then is how much of these resources are really necessary. How much
interaction is necessary has received much attention (see for example, [31] and others). How
much randomness is necessary for IP has, on the other hand, received no attention.

Together with Bellare, Rompel, and Goldreich [42], we started an investigation into how
much randomness is necessary to recognize a language L E IP in a given number of rounds
and a given error probability. In particular, we show how to transform an interactive proof
system for L where tosses 1 coins per round and error probability 1 to an interactive proof
system for L with the same number of rounds, error probability ", the verifier tosses 0(1+ k)
coins per round. Previous transformation required O(lk) coins per round.

Professional Activities

During 1989-90, Goldwasser was an invited speaker to the short course on "Number Theory
and Cryptography" held by the AMS in Boulder, CO during August. The lecture notes will
be assembled into a book by the American Mathematical Society. Goldwasscr was also an
invited speaker to the British Colloquium on computer science held in Manchester, Britain in
March 1990, and an invited speaker to the International Congress of Mathematicians (ICM)
in Japan, August 1990.

Goldwasser also participated in the Oberwolfach Conference on Cryptography, Germany, Oc-
tober 1989; the DIAMICS Workshop on Distributed Computing and Cryptography, October
1989; and Workshop on Circuit Complexity in Barbados, organized by McGill University,
February 1990.

Goldwasser edited "Advances in Cryptology: CRYPTO'88," published by Springer-Verlag,
which appeared in February 1990. The book contains the proceedings of the CRYPTO88
Conference held in Santa Barbara in August 1980 for which she was a Chairperson. In
addition, Goldwasser continued to be an editor for SIAM Journal of Computing, Journal of
Cryptology, and a new journal on the foundations of computer science.

Finally, Goldwasser is writing up two sets of of lecture notes. The first on computational
number theory and cryptography (a result of the short AMS course), and the second a
manuscript for an introductory cryptography classes.

Leonidas Guibas

During the past year, Guibas together with several coworkers, studied certain natural com-
binatorial questions in geometry. The results obtained are of the following form: if we are
given points in some Euclidean space and many "nice" objects, each "defined" by only a few
of the points, then a large number of these objects must intersect at a common point (not
necessarily one of the given points). For instance, if we are given n sites on the real line, and
m > 2n intervals defined by pairs of these sites, then there has to be a point of the real line
contained in at least m2 /4n 2 of the intervals.
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These covering results lead to many interesting consequences in combinatorial and compu-
tational geometry. They can be used to show that, given any set P of n points in space,
there exists another set Q of roughly n 1/2 points such that the Delaunay triangulation of
P 1 Q has size roughly only 0(n 3 /2 ), even though that of P itself can have size 1(n 2 ) [70].
Furthermore, the set Q can be efficiently computed from P. Thus in three dimensions, if a
point set has an unacceptably large Delaunay triangulation, we can always add some extra
points and reduce the size of the triangulation. Such results are important in building finite
element codes.

Another application of the packing results yields the following: for any set S of n points in
the plane, and any n3 - triangles spanned by these points, there exists another point (not
necessarily of S) contained in at least (roughly) n-'a of the triangles. This implies that any
set of n points in three dimensional space has at most (roughly) ns/3 halving planes [14].
This is a big improvement on the previously best known upper bound for one of the most
famous problems in combinatorial geometry.

On a different front, Guibas, together with some ex-students and coworkers from Japan,
continued the development of geometric algorithms based on the topological sweep paradigm
introduced by him and Edelsbrunner [101] a few years back. New results this year include
an extension of the topological sweep algorithm to handle an arrangement of planes in three
dimensions [11], as well as a delicate refinement of the planar method that is capable of
sweeping the portion of an arrangement inside a convex region in time proportional to the
complexity present in that region [15]. Both of these extensions have many applications that
are given in the referenced papers.

Guibas and coworkers at DEC/SRC continued previous work on developing a framework for
building robust geometric algorithms. They developed a proof that, given any set of points
in the plane, there exists a polygon that is convex enough to be found with approximate
tests, such as floating-point arithmetic, and is also very close to tightly containing all the
points of the given set. Such a polygon is a very useful approximation to the convex hull
of the points in an environment (such as all real geometry systems) where one needs to
operate with primitivcs of limited precision. They also developed an algorithm for finding
this approximate convex hull [137]. The computation of convex hulls (this time in an infinite
precision model) also gave rise to a new data structure called compact interval trees. This
is a structure that allows one to compute very quickly convex hulls of subpaths of a given
simple polygonal path in the plane. This and related results are given in [135].

Finally, Guibas, Knuth, and Sharir developed an extremely simple new incremental algorithm
for computing Voronoi diagrams or Delaunay triangulations of point sets in the plane. The
algorithm takes optimal time O(n log n) if we randomize the sequence of insertion of the
sites. It also has many other pleasant properties, including the fact it allows one to build
a point-location structure for searching the corresponding diagram without additional effort
[136].

Service to the profession: During the past year Guibas served on the Program Committee
for the SIGGRAPH '90 ACM Conference, and continued to serve on the editorial board of
nine journals.
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Tom Leighton

Leighton and his colleagues continued to make substantial progress on packet routing and
sorting algorithms, fault-tolerance in networks, and on approximation algorithms for NP-
complete problems.

Highlights of this year's research include the discovery of the first O(log N)-step algorithm
for online routing in a nonblocking network (joint with Sanjeev Arora and Bruce Maggs),
and the discovery of a simple sorting circuit with depth 7.5 log N that works for aLiost all
inputs (joint with Greg Plaxton). Both results appear to be practical and could well have
applications to the design of parallel machines and communications networks. In particular,
Leighton and Maggs are working with members of Tom Knight's group on the design of a
parallel network for the Transit Machine.

The new ACM Symposium on Parallel Algorithms and Architectures got off to a great start
with its first meeting in Santa Fe last year, combining the best of theory and practice in
the parallel area. This year's meeting will be in Crete, and an excellent collection of papers
has already been selected for presentation at the meeting. Leighton will continue to serve as
Conference Chair for the symposium until the 1992 meeting. The 1991 meeting will be in
late July on Hilton Head Island, South Carolina.

Leighton continues to write his book on parallel algorithms and architectures (ever so slowly),
and he is optimistic that with the addition of Bruce Maggs as coauthor, the project can be
completed this year!

Both Mark Hansen and John Rompel will complete their theses this year, and have done
a great job. Mark is going into business, and is off to a great start after winning a $5,000
prize in the MIT entrepreneurship contest. John Rompel, on the other hand, became the
first student ever to win two best student paper awards at the FOGS and STOC conferences.
John's awards were for his discovery of methods for derandomizing parallel algorithms (joint
with Bonnie Berger), and for his design of secure digital signature schemes.

Charles E. Leiserson

Leisersn's research is currently focusing on the problems of building very large scale com-
puters having, perhaps, more than a billion processors. In addition, he has been studying
parallel algorithms and architectures, as well as phenomena in VLSI circuitry. A highlight
of his research this year is an algorithm developed with his student Alexander Ishii that
provides the first polynomial-time test for correct functioning of level-clocked circuitry [149].
Also, much of Leiserson's earlier work on digital circuit retiming with James B. Saxe of
Digital Equipment Corporation was revised and published [189].

Leiserson also completed writing his textbook [801 Introduction to Algorithms, coauthored
by Ronald Rivest and Thomas Cornien. The book offers a comprehensive, but elementary,
introduction to the analysis of computer algorithms. It is published jointly by the MIT Press
and McGraw-Hill Book Company.

Three of Leiserson's Ph.D. students completed their degrees in the past year. Ronald 1.
Greenberg completed his thesis Efficient Interconnection Schemes for VLSI and Parallel
Computation, and assumed an assistant professorship at the University of Maryland. Bruce
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M. Maggs completed Locality in Parallel Computation, and became a postdoc in the group.

Cynthia A. Phillips's thesis is entitled Theoretical and Experimental Analyses of Parallel

Combinatorial Algorithms, and she assumed a research position at Sandia National Labora-
tory in New Mexico.

Leiserson is currently supervising Bobby Blumofe, Thomas Cormen, Alexander Ishii, Shlomo

Kipnis, and James Park.

In September, Leiserson assumed leadership of the newly formed VLSI and Parallel Systems
Group at MIT when Paul Penfield, who had run the Microsystems Research Center, became
head of the EECS Department. The programs run by the MRC were divided between VPS
and the Microsystems Technology Laboratories. The group currently has eight faculty drawn
from three MIT Laboratories: Artificial Intelligence Laboratory, Laboratory for Cumputer

Science, and Research Laboratory for Electronics. The goal of the VPS Group is to under-
stand how integrated circuit technology can be applied to the design and construction of

high performance computer systems.

The VPS Group ran four important programs last year. The Sixth MIT VLSI Conference
in April brought together technical leaders in the university, industry, and government com-
munities. The attendees agreed it was one of the strongest conferences we have had. Jointly

with the Microsystems Technology Laboratories, the VPS Group also supported the MIT
VLSI Seminar Series, the MIT VLSI Research Review, and the MIT VLSI memo series.

Nancy Lynch

Please see her entry under the Theory of Distributed Systems chapter.

Albert R. Meyer

Meyer's research focuses on semantics and logic of programming languages. During the past

year, he worked on the following particular research topics.

Research Topics

* Semantics of Concurrency: Meyer and Bloom continued their study of basic notions
of concurrent process equivalence [56][55][57][58].

* Semantics of Terminating Evaluation. Research with Riecke and Cosmadakis (IBM
Watson Research Center) on the "lazy" lambda calculus which repairs the mismatch

between classical semantics in which expressions M and Ax.M mean the same thing,

even though evaluation of M may diverge while evaluation of Ax.M always terminates

immediately, cf. [223](59][81]. In [82], they demonstrate completeness and decidability
of an axiom system for equational sequents involving pure, simply typed terms of the
"lazy" lambda calculus.

e Dataflow Semantics: See the report of Arie Rudich.

e Thcory of Sequential Functions: See the report of Trevor Jim.

* Type-checking for records with inhrih, ucc: See the report of Lalita Jategoankar.
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Professional Activities

9 Co-chair, "International Conference on Theoretical Aspects of Computer Software,"
Sendai, Japan, September 1991.

o General Chair, IEEE Symposium on Logic in Computer Science (LICS).

* Moderator for three computer science research email forums on (1) types, (2) concur-
rency, and (3) logic.

@ Member, Program Committee, International Symposium on Logic at Botik, Pereslavl-
Zalessky, USSR, July 1989; "Kleene '90" Logic Symposium, Chaika, Bulgaria, June
1990.

e Member, NSF Computer Science Advisory Board.

* Thesis Supervision:

Ph.D. 1. Bard Bloom, completed August 1989.

2. Jon Riecke.

3. David Wald.

4. Lalita Jategoankar.

S.M. 1. Michael Ernst.

2. Arthur F. Lent.

3. Lalita Jategoankar, completed August 1989 [151].

4. Trevor Jim.
5. Arie Rudich, completed May 1990 [256].

S.B. 1. Arthur F. Lent, completed January 1990 [190].

* Editorial Activity:

Editor-in-Chief, Information and Computation; Managing Editor, Annals of Pure and
Applied Logic; Co-editor, MIT Press Foundations of Computing Series; Editorial Board
Member, SIAM Journal of Computing, Journal of Computer and System Sciences, The-

oretical Computer Science, and Advances in Applied Mathematics; Advisory Editor,
Handbook of Logic in Computer Science and Handbook of Theoretical Computer Sci-
ence; Co-editor, Proceedings of Logic at Botik [2241; and Member, MIT Press Editorial
Board.

Silvio Micali

Most of Micali's research efforts have been devoted to develop theory in the area of secure
protocols. Here, there is good news and bad new. The good news is that we are dealing
with a novel and exciting subject that may prove very useful in an electronic world. The
bad news is that the field is very difficult and largely unexplored.

154



Theory of Computation

A program is already a very difficult beast to tame and deciding whether a given program
is correct not only is impossible in general, but is also "impossible" in practice. Worse yet,
a protocol is a program run by many parties, some of which may cooperate in disrupting
the joint effort! In this situation, not only is it difficult to find correct protocols, but also
to discuss what correctness should mean. We were fortunate, though, to make progress on
finding the right notion of security for multiparty protocols and a theoretical study of how
efficient can these protocols be made. We describe some token results in this line.

The Right Notions. The field of secure protocols has quickly outpaced its foundations.
Valuable definitions for secure protocols have been given (in various degrees of explicitness)
by many researchers-including us. However, these definitions differed among themselves
in subtle but crucial ways, and were sometimes designated protocols "secure" that should
not be so. analysis. In [166], we finally provide an important step in order for foundational
issues to catch up. Namely, we distill the proper notion of secure computation, and endow
the field with a sound and most general definition of it.

Minimizing Resources. Having clarified what secure protocols should be, we turned our
attention to investigating what are the minimum amount of resources for indeed implement-
ing protocols in a secure way.

In [40], we consider the following problem. Assume we have n parties, 1 through n; each
party i has a private input xi known only to him. The parties want to evaluate correctly a
given function f on their inputs-that is to compute y = f(Xi, ... , X,)-while maintaining
the privacy of their own inputs. That is, they do not want to reveal more than the value y
implicitly reveals. This problem is the archetypal secure protocol problem. It was known to
be solvable before, but the number of rounds of communication for correctly and privately
evaluating f grew with the complexity of the function f. This was indeed a drawback, since
one can perform a lot of cryptographic computation in a few seconds, but the time to send
e-mail back and forth a thousand times easily requires a month. Fortunately we have been
able to show that there exists a protocol for correctly and privately evaluating any function,
independently of its complexity, in a constant number of rounds (actually 16.)

Sometimes, there are circumstances in which not even a constant number of communication
rounds is deemed practical. What then? In [43], we show that fundamental protocols, like
the oblivious transfer, can be implemented securely without any interaction at all! In essence,
we exhibit a method to compute special, matching encoding-decoding key pairs. User A,
having produced such a pair (P,S), will publish P and keep secret S. At this point, a sender B
can look up P, make sure that it satisfies a given condition and encode two message m and
M 2 , using the public encoding key. B is guaranteed that user A, thanks to his secret decoding
key S, will be able to decode exactly one of these two encrypted message: either mo or mi,
at random. Moreover, the sender B will not know which of the two messages A succeeded
in reading. An exchange like the one discussed above is called an oblivious transfer. It is a
fundamental primitive in protocol design and it was previously believed to require a lot of
interaction for achieving its "paradoxical" constraints. Instead, we show that A and B do
not need to interact, except for A publishing--once and for all-the public, encoding key.
This result improves a previous one of Bellare and Micali where, however, the transfers were
not independent. That is, if B sent to A two more messages, and A succeeded the first time
around in reading the first message, then he will read the first message also the second time.
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In [165], we minimize the resources needed in a zero-knowledge proof. These are the number
of ciphertexts (as each ciphertext involves an overhead in number of bits) end the number of
rounds of interaction. We show that two ciphertexts are enough. Also, we show that after a
small pre-processing step, given any one-way function, one can prove an unbounded number
of theorems in zero knowledge, each without interaction. That is, each zero-knowledge proof
consists of a single message, from the prover to the verifier, to which the verifier needs not to
respond. Thus, the proving process is extremely efficient, once the preprocessing step is done.
Moreover, such a preprocessing step depends logarithmically on the desired probability of
error; ch is also very efficient. Previous methods also exhibited a polynomial dependence on
the size of the theorem (i.e., the number of bits in its statement-which can be very large).

Additional results on minimizing the resources in zero-knowledge protocols can be found in
references.

Making it easy. In [46], we show how the design of cryptographic protocols can be vastly
simplified. Essentially, we exhibit a cryptographic compiler that, given a protocol that is
secure with respect to an honest participant, returns a protocol that is secure even against
an arbitrarily cheating one.

Make it efficient. In [106], we address the problem of efficiency for the fundamental
primitive of digital signatures. Computing a digital signature is feasible for the legal signer,
though not trivial. However, it should be infeasible for a forger. An RSA signature with
a 512-bit security parameter appears hard to forge with current knowledge about factoring
algorithms, and can be easily computed in a few seconds. However, should the difficulty of,
say, integer factorization substantially decrease, then signing will require minutes even to the
legal signer. This is unpleasant, since the signing of a message can start after the message
is chosen. Thus, we develop an alternative approach to digital signature that allows us to
transfer the bulk of the computation in an offline stage that can be performed when the
message of interest is not yet chosen. Online, that is after the message has been selected, a
trivial amount of work will be required instead.

One of the proposed directions of research is finding how much security is obtainable in proto-
cols without relying on complexity theory. Previous work by Goldwasser, Ben-Or, Wigderson
and Chaum, Crepeau and Damgard showed that having physically secure communication
channels and an honest majority may be enough. Recently Kilian and Micali [163] showed
that one can do without an honest majority, by using some simple physical mechanism like
an urn and ballots.

Ronald L. Rivest

Rivcst's research focuses primarily on the theoretical aspects of machine learning.

Ioge her with Javed Aslam, Rivest investigated the problem of inferring the structure of a
Nlarkov chain from its octptt. The special case of inferring the structure Mrkov chains,
wherc each node has degree at most two, has been effectively handled by a new algorithm.

Together with Bonnie Eisenberg, Rivest investigated the power of "membership queries" for
learning (in the distribution-free sense of Valiant) various concept classes. A general theorem
has been proven showing that for many concept classes membership queries do not improve
the efficiency of learning.
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Rivest supervised an S.B. thesis of Robert T. Adams on the problem of inferring Lisp pro-
grams from examples, in which queries to the user are used to resolve ambiguities that arise
during the inference process.

Together with Tom Cormen and Charles Leiserson, Rivest has finished an introductory
text on algorithms [80]. This text should be suitable for both introductory undergraduate
and introductory graduate courses. Rivest developed a new one-way hash function, called
"MD4," which he proposed for adoption as a standard "message digest" algorithm.

Michael Sipser

Sipser's work continues to focus on aspects of complexity theory, including the structure of
complexity classes and proving lower bounds on the complexity of specific problems.

Together with Michelangelo Grigni, Sipser [134] proposed a system of monotone complexity
classes, paralleling the familiar system. This includes monotone analogs of the classes P, NP,
L, NL, NC, and ACO among others. This allows a succinct statement of a number of the
previous known results in the area of monotone complexity, as well suggesting several new
lines of research. Monotone computation is of interest because it provides a nontrivial setting
where the analogs of a number of the long-standing unsolved problems in computational
complexity theory may be settled, possibly shedding some light on the case for general
computation. One of the new results that has been obtained has been to show that the
monotone counterpart to the class NL, is not closed under complementation, in contrast with
the recent results of Immerman and Szelepcseny. One may view this as an argument that
their simulation must be inherently more complicated than many of the older simulations,
which also go through for the monotone case.

Together with Ravi Boppana, Sipser has completed a survey of recent work on the complexity
of finite boolean functions [63]. This will appear in the forthcoming Handbook of Theoretical
Computer Science.

Last August, Sipser participated in a conference at the University of Chicago organized
around a series of ten lectures that he gave on circuit complexity and the P versus NP
question. The meeting was quite successful, drawing over one hundred participants.

13.3 Student, Research Associate, and Visitor Reports

Javed A. Aslam

Aslam has been working with Ron Rivest on the inference of random walk processes. A
random walk process is modeled as a graph where nodes represent states and edges represent
transitions from state to state. If the edges are colored, then the output of a random walk
process is the sequence of colors corresponding to the transitions taken in a random walk on
the underlying graph. The aim of this research is to be able to reconstruct the underlying
graph given an output sequence of colors. Aslani and Rivest [17] developed polynomial time
algorithms to construct minimum consistent underlying graphs of degree 2. Algorithms to
construct underlying graphs of degree > 2 are being pursued.
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Aslam has also been working with Aditi Dhagat on the problem of 2- coloring k-hypergraphs.
Aslam and Dhagat [16] developed an optimal, online algorithm for 2-coloring a k-hypergraph
when the hypergraph has fewer than 2k-1 edges. Further, they have shown that if the
hypergraph has more than (3 + 2V2)k edges, then no online coloring algorithm exists.

Mihir Bellare

Bellare, Micali, and Ostrovsky investigated zero-knowledge interactive proofs in several di-
rections.

Quadratic residuosity and graph isomorphism are classic problems and the canonical ex-
amples of zero-knowledge languages. However, despite much research effort, all previous
zero-knowledge proofs for them required either unproven complexity assumptions or an un-
bounded number of rounds of message exchange. For both languages (and more generally
for any random self-reducible language), [45] we exhibit zero-knowledge proofs that require
only five rounds and no unproven assumptions.

Statistical zero-knowledge is a very strong privacy constraint which is not dependent on
computational limitations. In [461, it is shown that given a complexity assumption a much
weaker condition suffices to attain statistical zero-knowledge. As a result it is possible to
simplify statistical zero-knowledge and to better characterize, on many counts, the class of
languages that possess statistical zero-knowledge proofs.

Security in cryptography is traditionally proven via reductions. This can lead however to
considerable loss of provable security in practice. [44] analyses various coin flipping in the
well protocols from this point of view and finally provides a new protocol which performs
better than previous ones.

Bellare, Cowen, and Goldwasser investigated in [41] the properties of the Secret Key Ezchange
Protocol. This work is described in Cowen's report.

The power of interactive proofs arises from the use of two resources: interaction and random-
ness. While the first has been much investigated, the second is considered for the first time
in [421. Here, it is shown how to substantially reduce the amount of randomness necessary
for the verifier to be convinced of membership in a language, within a given error probability

and a given number of rounds of interaction.

Bonnie Berger

This year, Berger continued her research on removing randomness from algorithms, espe-
cially focusing on parallel algorithms. All related work is contained in her completed doctoral
dissertation [37]. There are three steps to removing randomness from parallel algorithms:
first, design a randomized parallel algorithm; second, modify this algorithm to work using a
weaker form of randomness (one which has a smaller probability space); third, deterministi-
cally search this probability space for a point on which the algorithm performs well.

Berger, together with Rompel, [49][36] developed a general framework for removing random-

ness from randomized NC algorithms whose analysis uses only polylogarithmic indepen-
dence. Previously no techniques were known to determinize those RNC algorithms depend-
ing on more than constant independence. One application of their techniques is the first
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NC algorithm for the set discrepancy problem, which can be used to obtain many other NC
algorithms, including a better NC edge coloring algorithm and the first NC lattice approx-
imation algorithm. As another application of their techniques, they provided the first NC
algorithm for a hypergraph coloring problem. Additionally, they showed the set discrepancy
problem actually requires (log n)-wise independence. This work received the Machtey Award
for Best Student Paper at FOCS'89.

Berger, working with Rompel and Peter Shor [50], gave the first NC approximation algo-
rithms for the unweighted and weighted set cover problems. Their algorithms use a linear
number of processors and give a cover that has at most log n times the optimal size/weight,
thus matching the performance of the best sequential algorithms. Previously, there were no
known parallel algorithms for the general set cover problem. Berger, Rompel, and Shor de-
vised a randomized algorithm, depending on only pairwise independence, and then converted
it to a deterministic one. Furthermore, they applied their set cover algorithm to learning
theory, giving an NC algorithm to learn the concept class obtained by taking the closure
under finite union or finite intersection of any concept class of finite VC-dimension which
has an NC hypothesis finder. In addition, they gave a linear-processor NC algorithm for a
variant of the set cover problem, and used it to obtain NC algorithms for several problems
in computational geometry.

Berger, working with Peter Shor [51], devised the first nontrivial randomized polynomial-
time and RNC algorithms for the maximum acyclic subgraph problem (or equivalently, the
minimum feedback arc set problem), and used known, highly sequential techniques to convert
the randomized polynomial-time algorithm to a deterministic one.

Berger [47] introduced a new combinatorial method to bound the expectation of an absolute
value from below by a fourth moment. She presented a special case of this lower bound in
a particularly useful form-yielding a general mathematical inequality on expectations. She
applied her fourth moment method to obtain the first nontrivial, and also fairly efficient, NC
algorithm for the maximum acyclic subgraph problem. The method she used to derive this
algorithm allowed her to obtain a new bound on tournament ranking. She also applied her
fourth moment method to devise the first NC algorithm (which is also fairly efficient) for the
problem of obtaining large discrepancy. This can be used to obtain the first NC algorithms
for the Gale-Berlekamp switching game and the edge discrepancy problem. In fact, she
showed that it is truly necessary to consider a fourth moment-that is, the requirement of
4-wise independence is tight.

Diverging from the topic of removing randomness, Berger with Cowen [48], investigated a
new, natural enlarged class of scheduling problems, allowing concurrency and weak prece-
dence constraints, as well as the classical partial order constraints among tasks. They proved
that the problem of scheduling with both prerequisites and co-requisites, and the problem
of scheduling with just < constraints, are both NP-Complete for k > 3 parallel processors.
They gave an 0(n 3 ) algorithm for optimally scheduling with any subset of {<, <, =} con-
straints for k = 2, and obtained approximation algorithms for k > 3 processors. Their
results have applications to the Horizon architecture, an architecture currently receiving a
good deal of attention in Supercomputing research.

Berger is currently beginning an NSF Mathematical Sciences Postdoctoral Research Fellow-
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ship, at MIT under the sponsorship of Daniel Kleitman.

Margrit Betke

Betke began her studies as a graduate student at MIT in September 1989. She spent most
of the year on coursework, and worked on problems in computational geometry. Betke is
interested in algorithms for machine learning. She plans to work with Ron Rivest during the
summer of 1989.

Avrim Blum

Blum has been working on problems in computational learning theory and continuing his
work in approximation algorithms for graph coloring.

In the area of machine learning theory, he developed a model for learning from examples in
situations where there is a very large number of potential features or attributes that examples
might have, even though each example itself may have only a few of them [60]. For instance,
this might occur if one wished to classify research papers based on keywords; each paper
has only a few keywords, but the space of potential keywords is quite large and perhaps not
even known beforehand. He shows that many of the basic kinds of learnable concepts in
the standard theoretical models can be learned through different methods in this new model
as well. Blum has also worked on examining the relationship between two existing popular
theoretical learning models [61]. He shows a method using techniques from cryptography
to create concepts easy to learn in one model but hard to learn in the other. This method
allows one to focus on important differences between the models.

Together with Singh, Blum has been studying the problem of learning concepts that can
be described as a function of a small number of monomials over a set of Boolean variables.
These concepts generalize the class of k-term DNF studied by Pitt and Valiant [247]. Blum
and Singh show that the generalized class can be learned, but that to avoid intrinsic com-
putational limitations, the learner must use an expanded hypothesis representation. That
is, if the learner is forced to represent his hypotheses in the same form as the concept being
learned, then the problem becomes hard (NP-complete), but if the learner is allowed a freer
selection of hypotheses, then learning can be done quickly.

In the area of approximation algorithms for graph coloring, Blum improved on previous
performance guarantees for the problem of approximate coloring of 3-chromatic graphs. He
presents an algorithm that will color any 3-chromatic graph with O(n 3/8+o(1)) colors in the
worst case [62]. In addition, he is examining the problem of coloring graphs generated by
random and "semi-random" sources.

Tom Corrnen

Cormen, along with Charles Leiserson and Ron Rivest, completed writing the textbook
Introduction to Algorithms [801, which is being copublished by The MIT Press and McGraw-
Hill. The book should appear in May or June 1990.

Cormen is now pursuing doctoral research. He is currently working with Leiserson and
Shlomo Kipnis on the notion of locality-enhancing graph embeddings: given a source graph
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G and a target graph H, embed G in H so that if two vertices u and v in G are distance I
apart (i.e., the shortest path between u and v contains 1 edges), then the distance between
u and v in H is f(1), where f is as small a function as possible. Cormen and Kipnis have
proven upper bounds on embedding linear graphs in d-dimensional meshes, X-trees, and
hypercubes, and they are continuing this line of research.

Lenore Cowen

In [41], Bellare, Cowen, and Goldwasser investigated the properties which must be inherent
in any Secret Key Exchange Protocol, which is a protocol enabling two parties to establish a
common and secret key over public channels. They showed strong structural requirements
for such a protocol in both the uniform and non-uniform model. These in turn allowed them
to prove that one-way functions are necessary for secret key exchange (as a corollary, one
way functions are necessary for oblivious transfer). Their results imply that the existence
of a secret key exchange protocol also implies existence of strong bit commitment schemes,
(i.e., schemes in which the committer can reveal only one possible value, regardless of the
computational power of the committer.)

Cowen, with Berger [481, investigated a new, natural enlarged class of scheduling problems,
allowing concurrency and weak precedence constraints, as well as the classical partial order
constraints among tasks. They proved that the problem of scheduling with both prereq-
uisites and co-requisites, and the problem of scheduling with just < constraints, are both
NP-complete for k > 3 parallel processors. They gave an O(n3 ) algorithm for optimally
scheduling with an.,y ;-Oset of {<, <_, =} constraints for k = 2, and obtained approximation
algorithms for k > 3 processors. Their results have applications to the Horizon architec-
ture, an architecture currently receiving a good deal of attention in supercomputing research
[100][179][280].

Cowen plans to continue work on issues raised in her work with Berger; she also plans to
investigate further cryptographic problems with Goldwasser.

Aditi Dhagat

Dhagat was a teaching assistant for the graduate Theory of Computation course (6.840/18.404)
during the fall semester. She also worked with Sipser on the problem of constructing pseudo-
random number generators which are secure without requiring unproven assumptions. This
is in the spirit of results of Nisan and Wigderson [232], where pseudorandom generators
secure against constant depth polynomial were shown to exist. The security relied on proven
lower bounds on circuit size for computing the parity function. A later result of Nisan [231]
constructs pseudorandom generators secure against one-way logspace machines, where the
security comes from using universal hash functions. This generator stretches a random seed
of size log2 n to a pseudorandom string of length n. Dhagat and Sipser are also working on
the problem of improving this stretch, while maintaining the strength of the security of the
generator.

During the spring semester, Dhagat worked with Aslam on a problem suggested by Joel
Spencer. She and Aslam [16] have shown online algorithms for 2-coloring k-hypergraphs.
Their results show that if the k-hypergraph has no more than 2 k- 1 edges, then it can be
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2-colored by an optimal online algorithm. If the k-hypergraph has bounded degree (say k)
and has more than (3 + 2 /2)k edges, then they show that there is no online algorithm to
2-color, regardless of computation time.

Michael Ernst

Ernst spent most of his time on coursework this year, but also continued work with Meyer.
He will intensify his research on programming language semantics during the summer, and
expects to complete his S.M. thesis within the year.

Wayne Goddard

Goddard is a second-year student focusing on combinatorics. He has also been working on
"partial" sorting problems. In these problems, one is asked to determine only some of the
relationships between the elements; for example one might be given a collection of subsets of
the elements, and asked to find the maximum in each set. Together with King and Schulman
[119], Goddard found randomized algorithms for two such problems which use significantly
less comparisons than naive algorithms. It is also shown in [119] that these algorithms are
optimal to within a constant factor.

Sally A. Goldman

Goldman continued to work in the area of computational learning theory. With Rivest and
Schapire, Goldman studied the problem of designing polynomial prediction algorithms for
learning binary relations [1263. They study these problems under an online model in which
the instances are drawn by the learner, by a helpful teacher, by an adversary, or according
to a probability distribution on the instance space. Their goal is to minimize the number of
incorrect predictions. They represent the relation as an n x m binary matrix, and present
results for when the matrix is restricted to have at most k distinct row types, and when it is
constrained by requiring that the predicate form a total order. Namely, for both cases they
present upper and lower bounds on the number of mistakes any learning algorithm makes
when learning such a matrix under their extensions of the online learning model.

With Kearns, Goldman is exploring some of the interesting questions raised by the extended
mistake bound model discussed above. Namely, they are studying how the complexity of the
learner's task (as judged by the number of mistakes) depends on the presentation order of
the instances. When a teacher selects the presentation order, they consider the maximum
number of mistakes made by any learner that predicts according to some concept that agrees
with all previously seen instances. Thus they ask: what is the minimum number of examples
a teacher must reveal to uniquely identify the target concept? They are also studying the
related question of how many mistakes the learner must make in the worst case when selecting
the presentation order for the instances himself.

With Kearns and Schapire, Goldman has been investigating aspects of the PAC model [287].
They developed a new technique for exactly identifying certain classes of Boolean formulas
from random examples [1241. (Furthermore, they prove that these classes of circuits are
not efficiently learnable in the PAC model.) Their method is based on the observation of
the input-output behavior of the target formula on a fixed probability distribution which is
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determined by the fixed point of the circuit's a;nplification function (defined as the probability
that a 1 is output when each input is 1 with probability p). By demonstrating that the
circuit's behavior is unstable in an appropriate sense on this distribution, they are able
to infer all structnral information about the circuit (with high probability) by performing
various statistical tests on easily sampled variants of the fixed distribution.

With Kearns and Schapire, Goldman has also been studying the complexity of weakly learn-
ing [125]. Namely, how much data must be collected from an unknown distribution in order
to extract a small but significant advantage in prediction. Such a study is motivated in part
by settings in which there is a limited supply of examples.

Goldman will be finishing her Ph.D. [123] in June, and has accepted a faculty position at
Washington University in St. Louis beginning in August.

Michelangelo Grigni

Grigni is a fourth year graduate student supervised by Sipser. His primary research involves
the construction of fast robust networks for various kinds of communication problems, con-
tinuing work begun on the broadcasting problem with David Peleg [133] of the Weizmann
Institute.

With Sipser, Grigni is developing a classification of monotone space complexity classes,
including mionotone iogspace and monotone bounded- width branching programs. Indepen-
dently (and recently with Guibas), Grigni is attempting to tighten the large complexity gaps
of various sum-sorting problems.

Mark D. Hansen

Hansen completed his work in graph embeddings [139] and spent most of this year working
with Leighton and Aggarwal on computational geometry problems relating Voronoi diagrams
and query-retrieval problems [4]. The research which he has done in both of these areas
is presently being incorporated into his Ph.D. thesis. Hansen anticipates graduating in
December 1990.

In his most recent work with Aggarwal and Leighton, Hansen describes a new technique for
solving a variety of query-retrieval problems in optimal time with optimal or near-optimal
space. In particular, he uses the technique to construct algorithms and data structures for
circular range searching, half-space range searching, and computing k-nearest neighbors in a
variety of metrics. For each problem and each query, the response to the query is provided
in O(k) or O(k + logn) time where k is the size of the response and n is the size of the
problem. (E.g., for the n-point k-nearest neighbors problem, the k-nearest neighbors of any
query point are provided in O(k + log n) steps.) Depending on the problem being solved, the
space required for the data structure is either linear or O(nlogn). Hence, the time bounds
are optimal and the space bounds are optimal or near-optimal. Previously known data
structures for these problems required a factor of fl(logn(loglogn)) or fQ(lognloglogn)
more space and/or more time to answer each query.

The compaction technique introduced incorporates planar separators, filtering search, and
the probabilistic method for discrepancy problem.. T Le fun"c2.ieiuid 1. that k -order
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Voronoi diagrams (and other suitable proximity diagrams) can be compacted from kO1)n
space to O(n) space and still retain all the information that is essential for solving query
problems.

Alexander T. Ishii

Ishii generalized his VLSI timing analysis algorithms using the notion of a "base step"
function to encapsulate assumptions about when signal values change during the operation
of a circuit. He has shown how various base step functions can be used to provide sufficient
conditions for a circuit to operate properly. The base step function is used to derive a
"computational expansion" of the circuit from which a collection of simple linear constraints

are derived. These constraints can be efficiently checked using standard graph algorithms.
in addition, the algorithm can be adapted to determine the maximum frequency at which a
circuit can be clocked and to produce the limiting critical path.

Ishii and Leiserson developed a new base step function which is less pessimistic than the
analogous ones used in previous timing verifiers, yet correctly handles timing constraints that
are "cyclic" or extend across the boundaries of multiple clock phases or cycles. If a circuit
is modeled as a graph G = (V, E), where V consists of components-latches and functional
elements-and E represents intercomponent connections, the new base step function results
in an algorithm which verifies the proper timing of a circuit in worst-case O(IVIIEI) time
and O(IV 2 ) space [149].

Ishii has also been working with Thomas Knight of the MIT Artificial Intelligence Labora-
tory on a self-terminating, digitally-controlled, and ECL-compatible output pad driver for
high speed integrated circuits. By automatically series-terminating driven lines with their
characteristic impedances, the driver realizes speed, power, and noise improvements over
conventional designs. Series termination is realized by exploiting the intrinsic series resis-
tance of the output drive transistors. The design has not yet been fabricated, but simulations
indicate that data-transition rates in excess of 100MHz are possible.

Lalita A. Jategaonkar

Jategaonkar finished her Master's thesis [151], which further develops previous work with
John C. Mitchell, a professor at Stanford University. The thesis was supervised by Albert
Meyer. This research develops an extension of the programming language ML in which a
restricted object-oriented style can be achieved. In keeping with the framework of ML, a
type derivation system and a type inference algorithm are presented. It is proved that the
algorithm is sound and complete with respect to the type derivation system, and that it
infers a most general typing of every typeable expression in the language. A technical report
based on the thesis was also published this year [152], and Jategaonkar is currently working
on a journal version of this work.

Trevor Jim

Working with Meyer, Jim continued work on models of the language PCF [249], a simply-
typed lambda calculus.
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He has shown that the models of Berry and Curien [83][52], based on stable functions and
sequential algorithms, are not restrictions of the usual Scott model. These models were de-
veloped as alternatives to the standard model, which contains troublesome "non-sequential"
elements.

Extending the work of Bloom [54], Jim has shown that there is no extension of PCF by SOS
rules for which Berry's stable function model is fully abstract. Further directions include
extending this result to the other models, and the design of a restricted model based on
Berry's bidomains.

This research will comprise Jim's Master's Thesis, which he plans to write over the summer.

Nabil Kahale

Kahale entered the department in September 1989. He achieved an earlier work on modular
properties of the Bell Numbers. His resuhs will appear in the Journal of Combinatorial
Theory Series A [155].

Kahale is now working with Tom Leighton on the analysis of various routing protocols on
a mesh of arrays by applying new mathematical techniques. He also plans to work on the
construction of graphs having good expansion properties. Expanders are largely used in the
design of algorithms and networks in the field of parallel computation.

Michael Kearns

Kearns continued his research in the area of machine learning. Together with Lenny Pitt
of the University of Illinois, Kearns gave an algorithm for learning pattern languages with
a bounded number of variables from random examples drawn according to an arbitrary
product distribution over the substitution variables [157]. Pattern languages are motivated
by problems in string matching and genetics. Recent results by other researchers indicate
that the pattern learning problem with an unbounded number of variables is intractable, so
the algorithm ot Kearns and Pitt is optimal in an informal sense.

Together with Sally Goldman and Rob Schapire, Kearns developed an algorithm for exactly
identifying certain classes of circuits based on amplification functions [124]. The central
idea is to observe the input-output behavior of the unknown circuit on a simple probability
distribution that is unstable, in the sense that small perturbations of this distribution cause
noticeable statistical changes in the circuit's output. These techniques can be applied to
show the existence of universal identification sequences for classes of functions, which are
fixed input sequences whose outputs suffice to exactly identify any circuit from the class.

Again with Goldman and Schapire, Kearns investigated the sample complexity of weak
learning, in which the learning algorithm needs only to find an hypothesis whose accuracy is
slightly better than random guessing [125]. This model is motivated by situations in which
examples are rare and also by cryptographic settings, where small biases can greatly compro-
mise security. Results are given that demonstrate the power of randomized hypotheses in a
weak learning setting, and a partial combinatorial characterization of weak learning sample
complexity is given.
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Kearns and Schapire introduced a new model of learning probabilistic concepts, in which
each instance may have some probability of being positive and some probability of being
negative [158]. Such a model addresses settings as diverse as weather prediction, where one
is typically given a probability of rain for the day, and simple object classification, where a
probability may best model the degree to which an object has the desired property. In this
model, Kearns and Schapire give many provably efficient learning algorithms and investigate
the underlying theory of learning probabilistic concepts. This includes general techniques
for constructing good learning algorithms and a characterization of the sample size based on
uniform convergence results that generalizes the Vapnik-Chervonenkis dimension.

Finally, Kearns has spent part of the year making revisions to his doctoral dissertation, The
Computational Complezity of Machine Learning, which will be published by The MIT Press
in September.

Beginning in September 1990, Kearns will be at the International Computer Science Institute
in Berkeley, California.

Joe Kilian

Kilian has been working on the complexity of various cryptographic protocols. Fo, 'istance,
given two infinitely powerful parties who have access to an ideal commitment scheme (en-
velopes), can one party efficiently commit to a set of bits, and give a zero-knowledge proof
for an arbitracy boolean predicate on these committed bits? Here, "efficient" means using
a polynomial number of envelopes. Surprisingly, the answer is yes [38]. This result is used
to prove new upper bounds on the communication complexity of certain secure distributed
computations [381.

Joe also worked on so-called robust transformations of interactive proof systems [159]. In
a robust transformation, the new prover is not allowed to be substantially more powerful
than the original prover. He considered the problem of how to robustly transform interactive
proof systems into zero-knowledge interactive proof systems.

Joe worked on developing interactive proof systems with some provable security properties
[160]. Finally, he found even more ways of implementing oblivious transfer in terms of
seemingly weaker cryptographic protocols [161].

Shlomo Kipnis

Kipnis continued his investigation of bussed interconnections. He is trying to further explore
the power of bussed interconnection schemes for routing permutations and realizing various
communication patterns. Bussed interconnection schemes and their relation to difference
covers were explored by Joe Kilian, Shlomo Kipnis, and Charles Leiserson in [162].

Kipuis also invectigated priority arbitration schemes that employ m busses to arbitrate
among n modules. His novel binomial arbitration scheme, which uses at most m, lg n + 1
busses, enables achieving an arbitration time of t = ! lg n (in units of bus-settling delay).
This scheme substantially outperforms the commonly used binary arbitration scheme, which
uses m = Ig n busses and achieves an arbitration time of t = Ig n. Furthermore, his general-
ized binomial arbitration scheme achieves a bus-time tradeoff of the form m = O(tnl/t) be-
tween the number of arbitration busses m and the arbitration time t, for values of I < t < lg n
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and lgn < m < n. These new schemes can be adopted with no changes to cxis I. hardlv, ,'.
and protocols; they merely involve selecting a good set of priority arbitration codcer,)!,:
[167]. Kipnis also applied for a patent on these new arbitration schenes, thiough the
Technology Licensing Office.

In addition, he compiled a survey paper on the problem of range queries in computatioilid
geometry. Range queries are a fundamental problem in computational geometry with ap-
plications to computer graphics and database retrieval systems. The survey paper identifies
three general methods for range queries in computational geometry and classifies many of
the recent research results into one or more of these methods [168].

Michael Klugerman

Klugerinan took courses in algori'thms, complexity theory, and probability. He TA'd 18.409
Probabilistic Methods in the spring, and worked on routing problems on the hypercube.
Also, he plans to write a paper with Daniel Kleitrnan and others on a geometry problem
given to us by Paul Erdos.

Dina Kravets

Kravets spent the fall semester TAing 18.435, and continuing work with Alok Aggarwal and
James Park on algorithms for totally monotone and Monge arrays. Their algorithms for
parallel searching in generalized Monge arrays (together with Sandeep Sen) will appear in
[6]. During the spring semester, she started working with Leo Guibas on some problems in
computational geometry.

Arthur Lent

Lent became a graduate student at MIT in February 1990. Prior to then, he was an under-
graduate member of TOC. Working under Meyer's supervision, he completed his Bachelor's
thesis [1901 in January 1990. The thesis presents a call-by-name SECD machine. Earlier
work on SECD machines [248][185] had focused on call-by-value SECD machines. The ha
sic correctness result for the machine demonstrates that the operational behavior of this
machine correspondes with the operational behavior of PCF [249].

Lent also developed a set of notes for a three week unit on "Programning Language Theory"
for use in the undergraduate class "Computability, Programming, and Logic." These notes
gave a development of the semantics of a call-b y-value variant of PCF, that was an attempt
to ca)tuire the "Functional Kernel of Scheie (FI(S)." The notes provided two operational
characterizations, one via rewrite rules, and oi,1, via a SECI) machine, and established their
operntionlal equivalence. The notes ciiliniiited in a developnient of a denotational semantics
for IKS. The denotational serrianitics were based oil Plotkin's partial function model. Lent
and Riecke jointly worked to establish a direct proof of adequacy for this i.iohel.

Lent also becaie interested in intuitionistic logic, aild its applications to coinip ti,,r :ciei ie.

His reading in itritiitionistic logic has focused ii.irly on cnrrent efforts to cxll,,re not ,ii. ,)f
"Feasibly Constrictive Arithmetic," which is ;,iI atteiipt to gener.'ize Ihe iotioll ol pevi"
niial tiiie to higher type. One goal of this exlloratiorn woild be to extract polyninial i1 1,f
algorithins froii feasibly constructiye proofs.
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Leonid Levin

Comparing VLSI models [150] shows when the effect of wires' speed overtakes any effect of
wires' width and gives the best possible (slightly superlinear) threshold at which all effects
of wires' width vanish.

[150] shows the unexpected equivalence of average case NP-completeness in two classes of
distributions: P-time computable and P-time samplable.

Random Linear predicates R(x) of inputs x of one-way functions f were previously shown
(in [Goldreich Levin 89]) to be unpredictable from f(x), R. Their security was equal to the
security of f within a constant power. [194] makes this result tight: constant power is just
1 and the security loss is only a factor of 1x1 0(1).

Bruce Maggs

Maggs is studying algorithms for routing packets in switching networks. With Tom Leighton,
he developed a multibutterfly routing algorithm that is both robust against faults and effi-
cient from a practical point of view. For example, on an N-input multibutterfly with k faulty
switches, the algorithm can route any permutation between some set of N - O(k) inputs and
N - O(k) outputs in O(log N) time. Bruce Maggs, Sanjeev Arora, and Tom Leighton also
designed the first efficient on-fine algorithm for path selection in an optimal-size nonblock-
ing network. Viewed in a telephone switching context, the algorithm can put through any
sequence of calls among N parties on a network of size O(N log N) with O(log N)-bit-step
delay per call, even if many calls are made simultaneously. Finally, Bill Aiello, Tom Leighton,
Bruce Maggs, and Mark Newman discovered a randomized O(log N)-bit-step algorithm for
bit-serial message routing on a hypercube. The result is asymptotically optimal, and im-
proves upon the best previously known algorithms by a logarithmic factor. The algorithm is
adaptive, and by generalizing the Borodin-Hopcroft lower bound on oblivious routing, they
show that any other O(log N)-bit-step algorithm must be adaptive too.

Yishay Mansour

Mansour's interests include distributed communication networks, machine learning, and com-
plexity.

In the area of machine learning, he continues to investigate the possibilities of achieving
learnability by considering the Fourier transform. In [215], he describes various learning
algorithms in this spirit.

In the area of distributed computing, he is mainly interested in routing algorithms. In the
wcrk with Cidon, Kutten, and Peleg [74], they investigate simple routing strategies. In the
work with Schulman [218], they prove a tradeoff between time and space for sorting on a
ring.

In a work with Nisan and Tiwari [216], they investigate the computational complexity of
universal hash functions. They are able to establish a time space tradeoff for any implemen-
tation of such functions.
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Mojdeh Mohtashemi

Mojdeh entered the department in September 1989. During fall 1989, she was a teaching
assistant for the undergraduate course in Structure and Interpretation of Computer Programs
taught by Gerald Sussman. Mojdeh spent most of the year on coursework and readings in
cryptography.

Carolyn H. Norton

Norton, working with ftva Tardos (Cornell) and Serge Plotkin (Stanford) [234][233], de-
veloped a strongly polynomial algorithm to solve finite dimensional linear programs, when
feasible space is not given explicitly by a set of inequalities, but is instead given by a sepa-
ration algorithm.

She is currently working with Dimitris Bertsimas on studying the relation between integer
programs and their linear programming relaxations.

Rafail Ostrovsky

Ostrovsky is working on feasibility results concerning the implementation of secure com-
putation and proof systems in insecure communication environments. More specifically, he
explores two basic questions: the first is basing security primitives on assumptions as general
as possible and making connections between these primitives, and the second is investigating
various models of computation in which secure computation can be implemented.

Mihir Bellare, Silvio Micali, and Rafail Ostrovsky show how the number of rounds of inter-
action can be reduced (to constant) for Perfect zero-knowledge interactive proofs for Graph
Isomorphism and Quadratic Residuosity (more generally, for any random self-reducible prob-
lem) [45]. In [46], they show how a statistical zero-knowledge protocol for an honest verifier
can be compiled into a statistical zero-knowledge protocol which works for any (even cheat-
ing) verifier. They examine the power of the Prover for giving a Zero-Knowledge proof; they
compare the "black-box" definition zero-knowledge to the standard definition; and they ex-
amine if zero-knowledge property can be retained if Prover wants to convince verifier with
probability one [46].

Joe Kilian, Silvio Micali, and Rafail Ostrovsky show how zero-knowledge protocols for NP
can be made non-interactive, assuming a pre-processing Oblivious Transfer protocol [164].

In [239], Ostrovsky presents the first poly-logarithmic simulation of an arbitrary computation
on probabilistic Oblivious RAM.

Ostrovsky, Venkatesan, and Yung [240] examine the model of two-party partial-information
games, when one of the players is infinitely-powerful, while the other is polynomially bounded.
They show that any such game is playable, given any one-way function and that there exists
a bit-commitment protocol from an infinitely-powerful player to a polynomial player, unless
there is no hard on average problem in PSPACE.

Marios C. Papaefthymiou

Papacfthymiou has been investigating parallel architectures under the supervision of C. E. Leis-
erson.
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His research explores both theoretical and practical aspects of synchronous circuitry opti-
mization. A general framework for this problem has been given by C. E. Leiserson and
J. Saxe [188]. Papaefthymiou demonstrated the closed-seniring structure of the retiming
operation on unit-delay circuits. He also gave a concise mathematical characterization of the
minimum clock period of a clocked circuit in terms of the minimum register-to-delay ratio
cycle in the system's graph representation. This result led to improved algorithms for retim-
ing of circuits with maximum delay D: an O(V1/2 Elg VW ig VD) algorithm for retiming
with clock period that does not exceed the minimum by more than D, and an O(VEIg D)
algorithm for minimum clock period retiming.

Recently, Marios Papaefthymiou with C.E. Leiserson have been investigating efficient algo-
rithms for mixed integer optimization problems.

James K. Park

Park spent the last year working with Alok Aggarwal (IBM Yorktown Heights), Dina Kravets,
and Sandeep Sen (Duke University) on a number of problems relating to Monge arrays. An
m x n array A = {a[i,j]} is called Monge if for 1 < i < m and 1 < j < n, a[i,j] + a[i +
1,y + 11 < ari,j + 1] + a[i + 1,j]. Monge arrays were introduced in 1987 by Aggarwal, Klawe,
Moran, Shor, and Wilber [5], who showed that several problems in computational geometry
and VLSI theory could be reduced to the problem of finding the maximum entry in each row
of a Monge array. Since this seminal paper, Monge arrays have been studied by a number
of researchers, and many additional applications of the Monge array abstraction have been
developed.

Park's most recent work with Monge arrays falls into three categories. First, Aggarwal and
Park have been studying the use of Monge arrays in solving economic lot-size problems,
an important class of problems from operations research [8][7]. Second, Aggarwal, Kravets,
Park, and Sen have been developing parallel algorithms-specifically PRAM and hypercube
algorithms -for searching in Monge arrays and generalized Monge arrays [6]. Third, Kravets
and Park have been investigating several selection and sorting problems in the context of
Monge arrays [1781.

In the coming year, Park plans to complete his doctoral thesis, a study of Monge arrays and
their applicatiuns. He also plans to begin work with Aggarwal and Marie Klawe (University
of British Columbia) on a monograph on the subject of Monge arrays.

Greg Plaxton

Plaxtor, is working on the development of algorithms for sorting on "cube-type" networks.
The class 4 cube-type networks- includes the hypercube, butterfly, cube-connected cycles
and shuffie exchange. Note that a special case of sorting is routing, which is arguably the
most im1portant, primitive operation required by any large scale parallel computer. With
Robert Cypher (IBM Almaden), Plaxton has devised a deterministic algorithm for sorting on
cube-type networks that runs in O(logn(loglogn) 2 ) time. The best previous deterministic
algorithm, for the sorting problem is due to Batcher, and runs in O(log 2 n) time [35]. If
a certain a,ount of preprocessing is allowed, the running time of Cypher and Plaxton's
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algorithm can be reduced to O(log n log log n). The best known lower bound for sorting on
cube-type networks remains S(logn) (a trivial bound).

More recently, Greg Plaxton and Tom Leighton have been investigating randomized algo-
rithms for sortiing on cube-type networks. The results follow from considering a particular
tournament based on the butterfly, and demonstrating that the tournament possesses a
strong ranking property. The ranking property of this tournament is exploited by using it as
a building block for efficient parallel sorting algorithms under a variety of different models
of computation. Three important applications are provided. First, a sorting circuit of depth
7.5log n is defined that sorts all but a superpolynomially small fraction of the n! possible
input permutations. Second, a randomized sorting algorithm is given for cube-type networks
that runs in 0(logn) word steps with very high probability. This algorithm has a signifi-
cantly smaller probability of failure than any previous randomized algorithm for sorting on
cube-type networks in the word model. Third, a randomized algorithm is given for sorting n
0(m)-bit records on an n log n node butterfly that runs in 0(m + log n) bit steps with very
high probability. All previously known algorithms for sorting on cube-type networks require
!Q(log2 n) bit steps.

Jon G. Riecke

Riecke has pursued the theory of functional languages. The research focused on moving the
existing theory towards more realistic programming languages.

In joint work with Stavros Cosmadakis and Albert Meyer, Riecke investigated the theory
of "lazy" functional languages [82]. The term "lazy" applies to functional languages which
pass arguments call-by-name but which halt at functional abstractions. Almost all call-by-
name languages exhibit this lazy behavior, but the standard theory of functional languages
does not adequately explain it. Building on the denotational semantics work of Abramsky
[1], Ong [237][238], Bloom and Riecke [59], and Cosmadakis [81], the three have found a
complete and decidable logic for proving computationally valid equations ("observational
congruences") between a certain class of programs. This logic forms the basis of reasoning
about code in most lazy functional languages. Complexity-theoretic issues in the logic will
be addressed in a forthcoming paper by Cosmadakis and Riecke.

Using the work in lazy languages as a basis, Riecke also examined the logic of call-by-value
languages [254]. Call-by-value languages form the vast majority of functional languages
e.g., Lisp, SCHEME, and ML), so this case, like the lazy case, is important from a practical
point of view. The discovery of a complete and decidable proof system for a limited class of
call-by-value equations is the main contribution of this work.

Riecke has also been working on connections between the operational and denotational se-
mantics of different programming languages. Specifically, he looked at the problem of finding
translations from one programming language to another. A general recursion-theoretic ar-
guinent shows that almost any programming language can simulate another. The problem
lies in finding tasteful translations that do not rely on the computational power of the pro-
gramming language. Translations from call-by-value to lazy languages, for example, have
been found, as well as negative theorems demonstrating the impossibility of finding well-
structured translations from lazy to call-by-value. The work will appear in a forthcoming
paper.
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Phillip Rogaway

The problem of secure distributed function evaluation entails a network of processors endeav-
oring to compute some function on privately held inputs, but in a manner which preserves
the privacy of these inputs. Working with Silvio Micali, Rogaway showed how to accomplish
this goal using only a constant number of rounds of interaction [40]. This vastly improves
the efficiency of [127] and related protocols for secure computation.

Rogaway investigated the possibility of constant round, information theoretically secure com-
putation. In [38], it is shown that the class of functions computable in this way is quite rich.

Foundational issues in secure computation have, so far, lagged behind the field's accomplish-
ments. In [166], careful definitions for correct and private computation under a dynamic
adversary are developed.

This summer, Rogaway will be working on writing up his thesis.

John Rompei

This year Rompel continued his research on low-independence randomness. This research
was along two main lines: the use of low-independence distributions to remove randomness
from parallel algorithms and the use of low independence hash functions in cryptographic
applications.

Rompel, together with Berger [49], developed a general framework for removing randomness
from randomized NC algorithms whose analysis uses only polylogarithmic independence.
Previously, no techniques were known to determinize those RNC algorithms depending on
more than constant independence. One application of their techniques is an NC algorithm
for the set discrepancy problem, which can be used to obtain many other NC algorithms,
including a better NC edge coloring algorithm. As another application of their techniques,
they provided an NC algorithm for a hypergraph coloring problem.

Rompel, working with Berger and Peter Shor [50], gave NC approximation algorithms for
the unweighted and weighted set cover problems. Their algorithms use a linear number
of processors and give a cover that has at most log n times the optimal size/weight, thus
matching the performance of the best sequential algorithms. Previously, there were no known
parallel algorithms for the general set cover problem. Berger, Rompel, and Shor devised a
randomized algorithm, depending on only pairwise independence, and then converted it to
a deterministic one. Furthermore, they applied their set cover algorithm to learning theory,
giving an NC algorithm to learn the concept class obtained by taking the closure under
finite union or finite intersection of any concept class of finite VC-dimension which has an
NC hypothesis finder. In addition, they gave a linear-processor NC algorithm for a variant
of the set cover problem first proposed by Chazelle and Friedman, and used it to obtain NC
algorithim. for several problems in computational geometry.

The other line of Rompel's research concerns the cryptographic applications of low indepen-
dence hash functions. The first such application he considered was that of digital signatures.
He showed in 1255] that secure signature schemes could be constructed from any one-way
function. This improved the best previous result, due to Naor and Yung, that one-way per-
mutations suffice to construct signatures. Furthermore, his result is optimal, since it was
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known that one-way functions were necessary for signatures. The construction starts with an
arbitrary one-way function and, after a series of six steps, ends with a one-way hash function
(which Merkle showed can be used to construct signatures). Most of the steps are based on
the use of low independence hash functions to alter the probability distribution induced by
a function.

Another application of low independence hash functions, explored in joint work with Bellare
and Goldwasser, is amplifying the error probability of interactive proofs without increasing
the randomness required [42]. For this construction, low independence hash functions are
used to randomly sample a function. By taking successively smaller samples using succes-
sively larger independence, they are able to exploit a tradeoff, keeping the error probability
and number of random bits constant.

Rompel is currently writing his Ph.D. thesis based on his work on low independence random-
ness, which he plans to finish in August. After that, he plans to do postdoctoral research,
under an NSF Fellowship, at the International Computer Science Institute in Berkeley, CA.

Arie Rudich

Rudich has been working with Meyer on semantics for dataflow networks, Specifically, he is
studying various notions of observing "completion." Rudich finished his Master's thesis this
year. The thesis investigates a notion of "completion," based on observing fair computations.
It presents a semantics for nondeterministic dataflow networks which is fully abstract with
respect to observing finite input-output relations of fair computations. This semantics thus
reflects both safety and liveness properties of network computations with respect to finite
observations. Prior models [172][242][210][153][274] required observing infinite behaviors to
accommodate liveness properties.

Rudich also studied algorithms for inference of finite automata, trying to extend the ideas
to infer nondeterministic and infinite automata.

Robert E. Schapire

Schapire continued to work on problems relevant to the distribution-free ("PAC") learning
model introduced by Valiant [287]. In particular, he considered the problem of improving
the accuracy of a hypothesis output by a learning algorithm in this model, and has shown
that a model of learnability, called weak learnability, in which the learner is only required to
perform slightly better than random guessing is as strong as a model in which the learner's
error can be made arbitrarily small [260]. His result may have significant applications as a
tool for efficiently converting a mediocre learning algorithm into one that performs extremely
well. His result also has some unexpected theoretical consequences relating to the general
complexity of learning in the Valiant model.

Schapire also looked at the problem of learning pattern languages, a simple class of lan-
guages introduced by Angluin [121. He was able to show in a very strong sense that such
languages are unlearnable in the PAC model (assuming P/poly # NP/poly), regardless of
the representation used by the learning algorithm [261].

With Goldman and Kearns, Schapire has been investigating other aspects of the PAC model.
They developed a new technique for learning certain functions under particular fixed but
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simple distributions by observing the statistical behavior of the function under simple per-
turbations cf the fixed distribution [124]. They have also been studying the complexity of
weakly learning, that is, of obtaining a small but significant advantage in prediction [125].
Such a study may be especially relevant in settings in which the supply of examples is severely
limited.

With Kearns, Schapire has been exploring a new and important extension to the Valiant
model, namely to the problem of learning concepts that may exhibit uncertain or proba-
bilistic behavior on some examples [158]. Such probabilistic concepts arise naturally in many
situations, such as weather prediction, where the measured variables and their accuracy are
insufficient to determine the outcome with certainty. While building on the recent results
of Haussler [142] on the sample complexity of learning in probabilistic settings, Kearns and
Schapire focus primarily on the design of efficient algorithms for learning probabilistic con-
cepts. Their work also extends many of the results in the standard PAC model to the new
probabilistic model.

Finally, Schapire has been working with Goldman and Rivest on the problem of inferring a
binary relation between n objects of one kind and m of another [126]. This can be viewed
as the problem of inferring an n x m binary matrix. Their goal has been to minimize the
number of prediction mistakes made by a learner presented with such a matrix one entry at
a time. They have been able to prove numerous upper and lower mistake bounds for several
variations of this problem.

Leonard Schulman

In the summer and fall of 1989, Schulman worked with W. Goddard on general sorting
problems. In these problems, only partial information is required about the order relations
among given elements; the goal is to obtain this information with a minimum of comparisons.
Their research will be presented, along with the work of V. King, at STOC 1990 [119].

In the fall of 1989, work of Schulman and Mansour on the problem of sorting in parallel, on
a ring of processors, was accepted for publication in Journal of Algorithms [217].

Currently, Schulman is working on problems in communication and circuit complexity. He
is guided in this work by his advisor M. Sipser, and by M. Karchmer. He intends to continue
this work during the summer of 1990.

In other work, Schulman, with D. Kleitman, M. Klugerman, W. Goddard, and others, has
been investigating some problems in combinatorial geometry.

Eric J. Schwabe

This year, Schwabe continued his study of the butterfly network vs. the shuffle-exchange
graph as intcrconnection networks for parallel computation. Although these well-known
hypercube-derived netwnrks share many characteristics, the question of their relative com-
putational strength has remained open.

Earlier work of his narrowed the gap between the two networks by showing that a class of
structured hypercube algorithms which could be simulated efficiently on the shuffle-exchange
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graph could in fact be simulated on the butterfly just as efficiently. This result was recently
submitted for publication [262].

Schwabe resolved the long-standing open question of the relative computational strength of
these two networks by proving that any T- step computation on an N-node butterfly can
be simulated in O(T) steps on an N-node shuffle-exchange graph, and vice versa [263]. This
result established the computational equivalence of many common hypercube-derived net-
works, and in addition yielded the first constant-slowdown simulation of the shuffle-exchange
graph on the hypercube.

Over the next year, he plans to work with Koch, Leighton, Maggs, Rao, and Rosenberg
[171] on a joint journal submission of related results on network emulations, while contin-
uing to study problems in parallel computation on hypercube-derived networks. He also
hopes to return to earlier unfinished work concerning networks for efficient parallel memory
management.

Mark Smith

Smith entered the department in September 1989, and he spent most of his time on course-
work. He plans to do readings in Circuit Complexity under the supervision of Mauricio
Karchmer this summer.

Clifford Stein

Stein has been working on developing sequential and parallel algorithms for combinatorial
optimization problems. In August, he completed his Master's thesis. The first result in the
thesis is a parallel algorithm to find a maximal set of edge-disjoint cycles in an undirected
graph in O(log n) time using m processors on a CRCW PRAM. He then uses as a primitive
for finding a cycle cover containing 0(m+n log n) edges using O(log 2 n) time on m processors.
The thesis also contains a result giving RNC algorithms for the assignment problem which
use a number of processors independent of the size of the largest number in the problem.
Stein has been working on submitting these results for publication [275][170][169].
Together with Philip Klein of Brown and Eva Tardos of Cornell, Stein developed new efficient
approximation algorithms for the concurrent multicommodity flow problem. Besides being
an important problem in its own right, the concurrent flow problem has many interesting
applications. Leighton and Rao used concurrent flow to find an approximately "sparsest
cut" in a graph, and thereby approximately solve a wide variety of graph problems, in-
cluding minimum feedback arc set, minimum cut linear arrangement, and minimum area
layout. Raghavan and Thompson used concurrent flow to approximately solve a channel
width minimization problem in VLSI. Klein, Stein, and Tardos give a fully polynomial ap-
proximation scheme for concurrent flow. Their algorithm is simple, and as a corollary, they
get 0(m ' log m) time algorithm to find an approximately sparsest cut in an m-edge graph,
and an 0(k1 "5 (m + n log n)) time algorithm to find an approximation to the channel width
minimization problem in an n-node, m-edge, k-channel graph.

Larry J. Stockmeyer

Stockmeyer has been working with Hagit Attiya, Cynthia Dwork, and Nancy Lynch on the
time to reach agreement in a timing-based model, where there is uncertainty in message
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delivery time and processor speeds, and where processors may fail by stopping. Upper and
lower bounds, tight to within a factor of 2, have been obtained. Stockmeyer is a member of
the program committee for the 1990 FOCS Conference.

David Wald

Wald came to MIT as a graduate student in September 1989. He is working with Meyer,
examining calculi for describing concurrent processes.

Joel Wein

Wein continued to work on several aspects of parallel computation and combinatorial opti-
mization. He extended his results on Las Vegas RNC algorithms, reported on in the last
progress report, to the case of planar multicommodity flows [291]. Working with Leighton
and Shmoys, he developed randomized approximation algorithms for the problem of job shop
scheduling, that achieve schedules that are O(log 2 M) worse than optimal, where M is the
number of machines. The best previously known deterministic polynomial time algorithm
was an O(M) approximation.

In the area of practical parallel algorithms, with Zenios of the University of Pennsylvania,
he developed an improved Connection Machine algorithm for the assignment problem. This
algorithm, a modification of Bertsekas' auction algorithm, exploits two different levels of
parallelism and an efficient method of communicating the data between them that avoids
the need to use the router, thus yielding significant speedups over previous implementations
[292].

David Williamson

Williamson spent the past year investigating approximation algorithms for several different
NP-complete problems.

The main focus of his work has been the Held-Karp heuristic for the Traveling Salesman
Problem (TSP) [143]. The heuristic computes a lower bound on the cost of the optimal
tour, a bound which in practice seems to be very tight. Previously, Shmoys and Williamson
[270] shown that the Held-Karp heuristic on the symmetric TSP with triangle inequality
has a certain monotonicity property; namely, the bound produced by the heuristic for a
subset of a particular input is no greater than that produced for the input itself. This
past year, Williamson extended these results to show that the monotonicity property also
holds for the asymmetric case with triangle inequality, and that this property implies that
the Held-Karp heuristic produces a value that is no less than 1/[logn] times the cost of
the optimal tour in the asymmetric case with triangle inequality. He also showed that in
the asymmetric case, the Held-Karp heuristic produces a value that always is at least the
value given by another lower-bound heuristic for the TSP due to Balas and Christofides [33].
Additionally, he demonstrated that there are a number of other equivalent formulations of
the Held-Karp heuristic in addition to the ones shown by Held and Karp in their original
paper. For instance, in the symmetric case with triangle inequality and non-negative edge
costs, the value of the Held-Karp heuristic is equal to the value of the linear relaxation of
the minimum-cost biconnected-graph problem. Finally, he showed that in the Euclidean
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case, solutions produced by the Held-Karp heuristic are planar. These results are collected
in Williamson's Master's thesis [295], which he completed this spring.

Williamson also worked on flow-shop scheduling, another NP-complete problem. A common
approach to approximating the best flow-shop schedule is to find a good permutation of jobs.
Potts, Shmoys, and Williamson [250] found a family of instances for which this approach does
poorly. In particular, they showed that for these instances the best possible permutation
schedule is a factor of vrii/2 worse than the overall best schedule, where m is the number
of machines in the instance.

Finally, Williamson considered a problem from learning theory called the minimum consistent
subset problem under the nearest-neighbor rule. Given a collection T of points with labels, a
consistent subset S C T is one that correctly classifies all the points of T under the nearest-
neighbor rule. Williamson showed that finding the smallest such set S is NP-complete,
and also that it seems unlikely that there is any approximation algorithm that can find a
consistent subset of size within any constant factor of the smallest such subset.

Yiqun Yin

This year Yin spent most of her time on course work. She is currently interested in the
theoretical aspect of machine learning, and to do some research in the bandit problems
during summer.
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Lecture given at University of Pennsylvania, Philadelphia, PA, May 1990.

[59J R. L. Rivest. Recent developments in machine learnidg theory. Lecture given at
Bar-Ilan University, and Foundations of Artificial Intelligence Conference, June 1989.
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[60] R. L. Rivest. Two deveiopments in machine learning theory. Lecture given at MIT
LCS 2 5th Anniversary Symposium, November 1989.

[61] R. L. Rivest. Public-key cryptography. Lecture given at SECURICOM 90 Conference
Paris, France, March 1990.

[62] R. L. Rivest. Two results in machine learning theory: on learning binary relations
and on improving a learning algorithm. Lecture given at MIT, ARO Research Review,
March 1990.

[63] P. Rogaway. Cryptographically secure distributed computation in a constant number
of rounds. Lecture given at DIMACS workshop, Princeton, October 1989.

[64] J. Rompel. Efficient NC algorithms for set cover with applications to learning and
geometry. Lecture given at 3 0 th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, NC, October 1989.

[65; Rompel. One-way functions are necessary and sufficient for secure signatures. Lecture
6:ven at 22' Annual ACM Symposium on Theory of Computing, Baltimore, MD (May
1990); University of California, Berkeley (November 1989).

[66] R. E Schapire. The strength of weak learnability. Lecture given at Second Annual
Workshop on Computational Learning Theory, 30th Annual Symposium on Foundations
of Computer Science, MIT Laboratory for Computer Science, 1989.

[67] R. E. Schapire. Unsupervised learning of deterministic environments. Lecture given at
Harvard University Natural Information Processing Seminar series, 1989.

[68] L. Schulman. Optimal randomized algorithms for local sorting and set-maxima. Lecture
given at the 2 2nd Annual ACM Symposium on Theory of Computing, May 1990.

[69] E. J. Schwabe. On the computational equivalence of hypercube-derived networks.
Lecture given at Second Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, July 1990.

[70] E. J. Schwabe. On the computational equivalence of hypercube-derived networks.
Lecture given at Second Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, July 1990.

[71] C. Stein. Leighton-Rao might be practical: faster approximation algorithms for con-
current flow with uniform capacities. Lecture given at 22"' Annual ACM Symposium
on Theory of Computing, May 1990.

[72] C. Stein. A new parallel graph decomposition technique with applications to finding a
cycle cover. Lecture given at Fifth SIAM Conference on Discrete Mathematics, June
1990.
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[73] L. Stockmeyer. Bounds on the time to reach agreement in the presence of timing
uncertainty. Lecture given at TDS Group Meeting, MIT LCS (February); IBM T.J.
Watson Research Center (March); Yale University (April); Cornell University (April)
1990.
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14.1 Introduction

The Theory of Distributed Systems research group continued its work on algorithms and im-
possibility results for distributed problems, as well as its work on modeling, proof techniques
and applications. Particular highlights this year include results on timing-based computing
and the development of the Spectrum system for simulating distributed algorithms.

14.2 Faculty Reports

Nancy A. Lynch

This year, Nancy Lynch worked mainly on upper and lower time bound results for timing-
based and asynchronous systems, as well as the development of models and proof techniques
for timing-based systems. First, she completed work with Hagit Attiya, begun last year, on
upper and lower bounds for the mutual exclusion problem in a timing-based setting [21].
Second, again working with Attiya, she developed a new mapping technique for proving
correctness and timing properties of timing-based algorithms [206]. Third, she worked with
Attiya, Dwork, and Stockmeyer to prove upper and lower time bounds for the problem of
distributed consensus in the presence of processor faults [20]. Fourth, she worked with Attiya
and Shavit to prove upper and lower time bounds for the problem of wait-free approximate
agreement. The main point of this work is to show that wait-free algorithms are inherently
more time consuming than non-wait-free algorithms, even in the "normal" case where no
processors fail [22]. The last three of these sets of results are all discussed in the report of
Attiya.

Lynch continued her work on the theory of atomic transactions. One major accomplishment,
done jointly with Alan Fekete and Bill Weihl [111], is a new result showing how some of
the standard techniques of the "classical" theory of database concurrency control can be
used to help prove the stronger "user-view" notion of database correctness described in
[110]. Another accomplishment is an almost-completed revision of work with Ken Goldman
on modeling replicated data algorithms [122]. Also, she helped revise an earlier paper on
modeling locking algorithms [109], for publication in a special conference issue of JCSS.

Lynch continued her work of last year on algorithms and impossibility results for data link
behavior. The work presented in [207] on the impossibility of implementing reliable data
link behavior in the presence of crashes was simplified and submitted for publication. With
Fekete, Lynch obtained a new result showing the impossibility of transmitting any data with-
out message headers [108]. Work in progress involves combining the remaining result of [207],
showing impossibility of reliable data link message transmission in the presence of bounded
he.4ders, with a contrasting result of Hagit Attiya, Mike Fischer, Lenore Zuck and Da-Wei
Wang in which such mebsagc delivery is achieved; the difference is that the impossibility re-
sult requires an assumption, violated by the algorithm, that the "be.& ca:e" message delivery
time be bounded by a constant. An interesting sidelight is that the correctness proof of this
algorithm (which is not at all obvious) has been verified automatically by Tobias Nipkow, a
visitor from Cambridge, Unglp-!, u,-ng t1kc a1:aL' ~c1z1C a ,o. theorem-prover.

Lynch also worked with Ken Goldman on a method of modeling asynchronous shared memory
algorithms within the I/O automaton model [122].
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Lynch began a consulting project with Digital Equipment Corporation on modeling, specifi-
cation and verification for timing-dependcnt communication protocols, and one with Draper
Labs on fault-diagnosis algorithms.

Lynch's professional service activities included the following:

1. Working on the committee to select the ACM thesis award winners.

2. Formulating (with Mike Fischer) a set of recommendations to the Computing Research
Board for the formation of a new Committee on the Status of Women in Computer

Science.

3. Serving on this year's panel to select the Presidential Young Investigators.

4. Conducting a review of the Computer Science Department at the University of Ten-
nessee.

5. Planning this year's POCS colloquium series.

With Weihl, Butler Lampson, and John Guttag, Lynch also worked on developing a new
course on "Principles of Computer Systems." In addition to supervising her own students,
she also served as thesis reader for Bard Bloom.

14.3 Research Associate and Student Reports

Hagit Attiya

Hagit Attiya continued to work on timing properties of distributed systems. Together with
Nancy Lynch, Hagit developed a new technique for proving timing properties for timing-
based algorithms; it is an extensiou of the mapping techniques previously used in proofs
of safety properties for asynchronous concurrent systems. The key to the method is a way
of representing a system with timing constraints as an automaton whose state includes
predictive timing information. Timing assumptions and timing requirements for the system
are both represented in this way. A multivalued mapping from the "assumptions automaton"
to the "requirements automaton" is then used to show that the given system satisfies the
requirements. The technique is illustrated with two simple examples, a resource manager
and a signal relay system, and a third, more complex example of a two-process race system.
The technique is shown to be complete, that is, if some automaton with certain timing
assumptions has certain timing behavior, than there exists a mapping from the "assumptions
automaton" to the "requirements automaton." (These results appear in [206].)

Together with Cynthia Dwork, Nancy Lynch and Larry Stockmeyer, Hagit studied upper and
lower bounds for the time complexity of the problem of reaching agreement in a distributed
network, in the presence of process failures and uncertain information about time [20]. It is
assumed that the anioiint of (real) timc between aity Lwo 4.onsecutive steps of any zionfaulty

process is at least cl and at most c2 ; thus, C = c2/c, is a measure of the timing uncertainty.
It is also assumed tbat the time for message delivery is at most d. Processes are assumed
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to fail by stopping, so that process failures can be detected by timeouts. A straightforward
adaptation of a (t + 1)-round synchronous agreement algorithm takes time (t + 1)Cd if
there are t faults, while a straightforward reduction from a timing-based algorithm to a
synchronous algorithm yields a lower bound of (t + 1)d. The main result is an agreement
algorithm in which the uncertainty factor C is only incurred for one round, yielding a running
time of approximately 2td + Cd in the worst case. A second result shows that any agreement
algorithm must take time at least, approximately, (t - 1)d + Cd in the worst case.

Hagit also continued to study the issue of fault-tolerance in various asynchronous distribuLed
systems.

Together with Yehuda Afek, Danny Dolev, Eli Gafni, Michael Merritt and Nir Shavit, Hagit
developed a wait-free algorithm for obtaining atomic snapshots of shared memory, using only
bounded amount of additional memory [2]. An atomic snapshot memory is a shared data
structure allowing concurrent processes to store information in a collection of shared registers,
all of which may be read in a single atomic scan operation. They present three wait-free
implementations of atomic snapshot memory. Two constructions implement wait-free single-
writer atomic snapshot memory from wait-free atomic single-writer, n-reader registers. A
third construction implements a wait-free n-writer atomic snapshot memory from n-writer,
n-reader registers. The first implementation uses unbounded (integer) fields in these registers,
while the other implementations use only bounded registers. All operations require 1(n 2 )
reads and writes to the component shared registers in the worst case.

In joint work with Amotz Bar-Noy and Danny Dolev, Hagit developed a method of emulat-
ing wait-free asynchronous algorithms that communicate via shared-memory in two different
message-passing systems [19]. The two message-passing models considered are a complete
network with processor failures and an arbitrary network with dynamic link failures. The
emulations are achieved by implementing a wait-free, atomic, single-writer multi-reader reg-
ister in unreliable, asynchronous networks. The overhead introduced by these emulations
is polynomial in the number of processors in the systems. Any wait-free algorithm based
on atomic, single-writer multi-reader registers can be automatically emulated in message-
passing systems. Immediate new results are obtained by applying the emulators to known
shared-memory algorithms. These include, among others, protocols to solve the following
problems in the message-passing model in the presence of processor or link failures: multi-
writer multi-reader atomic registers, concurrent time-stamp systems, e-exclusion, atomic
snapshots, randomized consensus, and implementation of a class of data structures.

Together with Nancy Lynch and Nir Shavit, Hagit explored the time complezity of wait-
free algorithms for approximate agreement in "normal" executions, where no failures occur
and processes operate at approximately the same speed. A lower bound of log n on the
time complexity of any wait-free algorithm that achieves approzimate agreement among n
processes is proved. In contrast, there exists a (non-wait-free) algorithm that solves this
problem in constant time. This implies an Q(log n) time separation between the wait-free and
non-wait-free computation models. Two fast wait-free approximate agreement algorithms are
presented, a constant time 2-process algorithm and an O(log n) time n-process algorithm;
the complexity of the latter algorithm is within a small constant of the lower bound. (These
results appear in [22].)
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Cynthia Dwork

(On Sabbatical from IBM Almaden)

Since arriving at MIT in September 1989 Dwork has:

1. Improved lower bounds on connectivity necessary for perfectly secure message trans-
mission in a general network in certain adversary models.

2. Identified and studied the effects of cooperation between two adversaries, the disruptor
and the listener on secret computation and secure message transmission.

3. Defined a stronger notion of secrecy in the presence of Byzantine faults than the one
generally studied in the literature, and obtained protocols for verifiable secret sharing
and secret computation at no increase in processors, and at no significant increase in
computation or communication costs.

4. Obtained almost tight upper and lower bounds on the time needed to reach Byzantine
agreement in the presence of fail-stop faults in a model of distributed computation
in which there are known upper bounds on message delivery time and known upper
and lower bounds on process step time. This work, joint with Attiya, Lynch, and
Stockmeyer, is discussed in the report of Attiya.

5. Served as Program Chairperson for the Ninth Annual ACM Symposium on Principles
of Distributed Computing.

6. Revised four articles in response to referee's comments. Of these, "A Time Complexity
Gap for 2-way Probabilistic Finite State Automata," written with Stockmeyer, has
been accepted for publication in SIAM Journal of Computing; and "Shifting Gears:
Changing Algorithms on the Fly to Expedite Byzantine Agreement," written with
Bar-Noy, Dolev, and Strong, has been accepted for publication in Information and
Computation.

Alan Fekete

Alan Fekete (University of Sydney) spent six weeks in July and August 1989 visiting the The-
ory of Distributed Systems research group. His research concentrated on reasoning about
nested transaction systems with special attention given to the following topics: verifying
replication management algorithms with weaker correctness conditions than external con-
sistent serializability, understanding the assumptions made in conventional serializability
theory, and optimistic locking techniques. He also was involved in research on the possibility
and impossibility of communication protocols using unreliable communication media.

Ken Goldman

Kenneth Goldman is a Ph.D. student in the Theory of Distributed Systems research group.
His thesis presents the Spectrum Simulation System, a new research tool for the design and
study of distributed algorithms. Based on the formal Input/Output Automaton model of
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Lynch and Tuttle, this research tool alows one to express distributed algorithms as collec-
tions of I/O automata and simulate them directly in terms of the semantics of that model.
This permits integ-ation of algorithm specification, design, debugging, analysis, and proof
of corrcctness within a single formal framework that is natural for describing distributed al-
gorithms. The research tool provides a language for expressing algorithms as I/O automata,
a simulator for generating algorithm executions, and a graphics interface for constructing
systems of automata and observing their executions.

Goldman has shown that the properties of the I/O automaton model provide a solid foun-
dation for algorithm development tools. For example, using I/O automaton composition,
Spectrum users may define composed types hierarchically, study simulations at varying lev-
els of detail, and create specialized debugging and analysis devices. These devices, called
spectators, are written in the Spectrum language just as any other system component, and
can monitor algorithm executions for correctness and performance without interfering with
the algorithm. Spectators are made possible only by the nonblocking, synchronous, multi-
party communication provided in the Spectrum system. Also, since the message system is
modeled explicitly as an automaton, users may study algorithms under different commu-
nications assumptions simply by substituting one automaton type for another. Techniques
used to prove the correctness of an algorithm can also be used as debugging tools. For
example, the system checks state invariants during execution and allows users to roll back
an execution to discover the source of errors. Several researchers have successfully used the
system to simulate and debug algorithms (for examples, see [138][191]).

Also in Goldman's thesis, the I/O automaton model is extended for both shared memory
[122] and superposition [121]. Possible extensions of the Spectrum Simulation System for
shared memory and superposition are discussed. In addition, an algorithm for distributing
the simulation system is presented in [120].

Upon completing his degree, Goldman will join the faculty in the Computer Science Depart-
ment at Washington University in St. Louis.

John Leo

John Leo has completed his Master's thesis "Dynamic Process Creation in a Static Model."
The thesis shows that proofs of correctness of algorithms involving dynamic process creation
and changing topologies can be handled rigorously within a static model, in particular, I/O
automata [2083. It is also shown that Actors [9] can be modeled using I/O Automata.
Additional proof techniques are developed and demonstrated.

Steve Ponzio

In addition to coursework and reading, Stephen continued his study of timing-based algo-
rithms. TIe xt,;nded his work on the dining philosophers problem, and developed a model
of bounded-capacity message links for which he showed a lower bound on the time required
to detect stopping failures.

Isaac Saias

Isaac Saias joined the Theory of Distributed Systems group in September 1989. Isaac is klr
rently studying the time complexity of Rabin's probabilistic algorithm for mutual exclusion.
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In this work he derives upper bounds for the expected time of a round in presence of an
adversarial scheduler.

Isaac also worked with Nancy Lynch and Stuart Adams on the modeling of a complex
system built up of potentially failing processors. They investigate different scheduling of
repairs when provided with partial information about the system in order to maximize the
expected life time.

Ken Streeter

Kenneth Streeter is continuing work on his Master's thesis "A Partitioned Computation
Machine." His thesis is being supervised by both Nancy Lynch and Paul Brown, his company
advisor in the VI-A Program with General Electric Corporate Research and Development.
The thesis develops a specification language which utilizes a pictoral representation language
extending Harel's statecharts [140]. The model is closely related to I/O automata [209]
and could be used as a visual specification language for I/O automata. A formal execution
semantics and methods of additive and multiplicative composition of partitioned computation
machines are developed and demonstrated.

Greg Troxel

Greg Troxel worked and completed his Master's thesis:

An algorithm for detecting and' recovering from deadlock in a system using remote proce-
dure calls is presented, along with a proof of correctness. The proof uses the I/O automata
model of Lynch and Tuttle, described in [209] and [208]. First, correctness conditions for
the problem are given in terms of I/O automata. Next, a high level graph-theoretic rep-
resentation of the algorithm is shown to be correct. Then a lower level formulation of the
algorithm, taking into account its distributed nature, is shown to be equivalent to the higher
level representation, and thus correct.

In giving the correctness conditions, we introduce client automata, which model the behavior
of the user's program, and allow almost all details of this user program to be suppressed at
both specification and proof time.

To simplify the proof of the high level version of the algorithm, safety properties are proved
with a simplified version of the algorithm. Then, the algorithm is transformed to the full
version, and it is argued that the safety properties hold for the transformed version.

A new technique that can be used either for expanding the number of algorithms to which
a proof applies or for simplifying the proof that a lower level algorithm solves the same
problem as a higher level one is presented. This is effected by underspecifying the predicates
used in the preconditions of the I/O automata. This captures the concept that whether or
not the algorithm takes a certain action under an intermediate range of conditions, it does
not impact its correctness. This lack of specification can be carried through to the low level
algorithm, presumably making the job of the implementor easier or allowing more efficient

code, since then at times arbitrary choices may be made. It can also be used to make showing
that the low level algorithm solves the same problem as the high level one easier.
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The proof of the liveness properties of the high level version of the algorithm makes use of a
metric on states of the algorithm. Rather than the conventional technique of claiming that
the set of values of the metric is well founded, we show that every subset of such values
occurring in a particular execution of the algorithm is well founded. This enables us to allow
the user program to request an arbitrary but finite number of remote procedure calls with
arbitrary arguments.

We then present the low level version of the algorithm, along with specifications for the
communications network, etc. used by it. A proof is presented showing that the low level
version of the algorithm (together with the network, etc.) is equivalent (from the point of
view of the user's prograr) to the high level version.

Mark Tuttle

Mark Tuttle finished his Ph.D. thesis "Knowledge and Distributed Computation" in Septem-
ber 1989. The topic of the thesis is the role of formal definitions of knowledge in the design
and analysis of distributed algorithms. The thesis shows how reasoning in terms of standard
definitions of knowledge can lead to fast solutions to problems like consensus and the dis-
tributed firing squad problems, and how to construct new definitions of knowledge that seem
to be useful in cryptography and areas where bounds on processors' computational powers
limit what they can know.

George Varghese

George Varghese joined TDS when he entered MIT as a full time graduate student in Febru-
ary 1990. He worked with Nancy Lynch, and Art Harvey and Radia Perlman (at DEC) on
the models and proofs of various transport and routing layer protocols. Recently, he has
been working on a randomized version of the two Generals problem to produce lower and
upper bounds on probabilistic safety for different adversarial models.

Undergraduate

Aparna Gupta

Aparna worked with Nancy Lynch on her undergraduate thesis this past term. Three
algorithms- e Hirshberg-Sinclair leader election, the Peterson leader election, and the
Dijkstra shortest paths algorithm-were described formally using Lynch and Tuttle's I/0
automaton model. These descriptions were then coded into Ken Goldman's Spectrum sim-
ulation in order to gain an intuitive feel for the working of the algorithms. The final thesis
discussed three points. The first one is the ease of translating the algorithms into the I/O
automaton model and in the Spectrum programming language, and what is gained by each
description. The second one is possible changes to the Spectrum interface which would en-
hance its ease of use and utility. And the final one is recommendations for further studies
facilitated by both methods of description.
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14.4 Publications

[1] Y. Afck, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots
of shared memory. In Proceedings of the Ninth Annual A CM Symposium on Princi-
ples of Distributed Computing, Quebec, Canada, August 1990. Also, Technical Memo
MIT/LCS/TM-429, MIT Laboratory for Computer Science, May 1990. Submitted to
Journal of the ACM.

[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing
systems. In Proceedings of the Ninth Annual A CM Symposium on Principles of Dis-
tribelted Computing, Quebec, Canada, August 1990. Expanded version: Technical Memo
MIT/ LCS/TM-423, MIT Laboratory for Computer Science, February 1990. Submitted
to Journal of the ACM.

[3] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischu. Renaming in an asyn-
chronous environiaient. Journal of the ACM, 37(3), July 1990. To apg ear.

[4] H. Attiya, C. Dwork, N. A. Lynch, an -I L. J. Stockmeyer. Bounds on the time to reach
agreement in the presence of timing uncertainty. In preparation.

[5] H. Attiya, M. Fischer, D. Wang, and L. Zuck. Reliable communication over an unreliable
channel. In progress.

[6] H. Attiya and N. Lynch. Time bounds for real-time process control in the presence
of timing uncertainty. In Proceedings of the Tenth IEEE Real-Time Systems Sym-
posium, Santa-Monica, CA, December 1989. Expanded version: Technical Memo
MIT/LCS/TM-403, MIT Laboratory for Computer Science, July 1989. Submitted for
publication.

[7] H. Attiya, N. Lynch, and N. Shavit. Are wait-free algorithms fast? Submitted for
publication.

[8] H. Attiya and M. Snir. Better computing on the anonymous ring. Journal of Algo-
rithms. To appear.

[9] J. Burns and N. Lynch. Mutual exclusion using indivisible reads and writes. In Proceed-
ings of 18 h' Annual Allerton Conference on Communications, Control, and Computing,
pages 833-842, 1980. Submitted for publication.

[10] A. Fekete, N. Lynch, Y. Mansour, and J Spinelli. The Data Link Layer: The Impos-
sibility of Implementation in Face of Crashes. Technical Memo MIT/LCS/TM-355.b,
MIT Laboratory for Computer Science, August 1989. Submitted for publication.

[11] A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Commutativity-based locking for
nested transactions. In Proceedings of Third International Workshop on Persistent
Object Systems, pages 113-127, Newcastle, Australia, January 1989. Revised version to
appear in JCSS.

205



Theory of Distributed Systems

[12] A. Fekete and N. Lynch. The need for headers: an impossibility result for commu-
nication over unreliab'e channels. Submitted for publication. Also Technical Memo
MIT/LCS/TM-428, MIT Laboratory for Computer Science, May 1990. Also to appear
in CONCUR, 1990.

[13] A. Fekete, N. Lynch, and W. '," -ihl. A serialization graph construction for nested trans-
actions. In Proceedings of the Ninth A CM SIGA CT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 94-108, Nashville, TN, April 1990.

[14] A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Atomic transactions. Book in progress.

[15] K. Goldman. Highly concurrent logically synchronous multicast. In Proceedings of

the Third International Workshop on Distributed Algorithms, September 1989. Longer
version as Technical Memo MIT/LCS/TM-401, MIT Laboratory for Computer Science,
July 1989. Also submitted to Distributed Computing.

(16] K. Goldman. Paralation Views: Abstractions for Efficient Scientific Computing on
the Connection Machine. Technical Memo MIT/LCS/TM-398, MIT Laboratory for
Computer Science, August 1989.

[17] K. Goldman. Superposition in the I/O automaton model. In progress.

[18] K. Goldman and A. Lynch. Modelling shared state in a shared action model. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, June
1990. Also Technical Memo MIT/LCS/TM-427, MIT Laboratory for Computer Science,
March 1990.

[19] K. Goldman and K. Yelick. Hierarchical correctness proofs for shared object systems.
In progress.

[20] J. Halpern and M. Tuttle. Knowledge, probability, and adversaries. In Proceedings of
the Eighth Annual A CM Symposium on Principles of Distributed Computing, pages 103-
118, August 1989. Also IBM Research Report RJ 7045, September 1989.

[21] M. Herlihy, N. Lynch, M. Merritt, and W. Weihl. On the Correctness of Orphan
Management Algorithms. Technical Memo MIT/LCS/TM-.'06, MIT Laboratory for

Computer Science, August 1989. Submitted for publication.

[22] N. Lynch and H. Attiya. Using mappings to prove timing properties. In Proceedings of
the Ninth Annual ACM Symposium on Principles of Distributed Computing, Quebec,
Canada, August 1990. Expanded version: Technical Memo MIT/LCS/TM-412.b, MIT

Labo'-tory for Comput,-r Science, December 1989. Submitted for publication.

[23] N. Lynch. A hundred impossibility proofs for distributed computing. In Proceedings of

the Eighth Annual A CM Symposium on Principles of Distributed Computing, Edmon-
ton, Alberta, Canada, August 1989. Also Technical Memo MIT/LCS/TR-394, MIT
Laboratory for Computer Science, 1989.
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[24] N. Lynch. Multivalued possibilities mappings. In Rex Workshop, Springer-Verlag
LNCS 430, Mook, The Netherlands, May 1990. Also Technical Memo MIT/LCS/TM-
422, MIT Laboratory for Computer Science, 1990.

[25] J. Welch and N. Lynch. Synthesis of Efficient Drinking Philosophers Algorithms.
Technical Memo MIT/LCS/TM-417, MIT Laboratory for Computer Science, November
1989.

Theses in Progress

[1] K. Goldman. Distributed Algorithm Simulation using Input/Output Automata. PhD
thesis, MIT Department of Electrical Engineering and Computer Science, 1990. Super-
vised by N. Lynch.

[2] S. Ponzio. Real-time Analysis of Timing-based Distributed Algorithms. Master's thesis,
MIT Department of Electrical Engineering and Computer Science, 1990. Supervised
by N. Lynch.

[3] I. Saias. Time Analysis of Probalistic Algorithm. PhD thesis, MIT Department of
Electrical Engineering and Computer Science, 1990. Supervised by N. Lynch.

[4] K. Streeter. A Partitioned Computation Machine. Master's thesis, MIT Department
of Electrical Engineering and Computer Science, 1990. Supervised by N. Lynch.

[5] G. Varghese. Dealing with Failure in Distributed Systems. PhD thesis, MIT Department
of Electrical Engineering and Computer Science, 1990. Supervised by N. Lynch.

Theses Completed

[11 M. Gupta. I/0 Automaton based Simulation of Selected Distributed Algorithms. Bach-
elor's thesis. MIT Department of Electrical Engineering and Computer Science. June
1990. Supervised by N. Lynch.

(2] J. Leo. Dynamic Process Creation in a Static Model. Master's thesis, MIT Department
of Electrical Engineering and Computer Science, May 1990.

[3] G. Troxel. A Hierarchical Proof of an Algorithm for Deadlock Recovery in a System
using Remote Procedure Calls. Master's thesis, MIT Department of Electrical Engineer-
ing and Computer Science, January 1990. Also Technical Report, MIT/LCS/TR-474,
MIT Laboratory for Computer Science, 1990. Supervised by N. Lynch.

[4] M. Tuttle. Knowledge and Distributed Computation. PhD thesis, MIT Department
of Electrical Erngineering and Computer Science, September 1989. Also Technical Re-
port MIT/LCS/TR-477, MIT Laoratory [or Computer Science, 1990 Supervised by N.
Lynch.
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Talks

[1] H. Attiya. Bounded polynomial randomized consensus. Lecture given at IBM Almaden
Research Center, San Jose, CA, August 1989.

[2] H. Attiya. Bounded polynomial randomized consensus. Lecture given at the Eighth
ACM PODC, Edmonton, Canada, August 1989.

[3] H. Attiya. Time bounds for real-time process control in the presence of timing uncer-
tainty. Lecture given at ONR workshop, October 1989.

[4] H. Attiya. Time bounds for real-time process control in the presence of timing un-
certainty. Lecture given at University of North Carolina, Chapel Hill, NC, October
1989.

[5] H. Attiya. Time bounds for real-time process control in the presence of timing uncer-
tainty. Lecture given at Tenth RTSS, Santa-Monica, December 1989.

[6] H. Attiya. Timing properties of distributed systems in the presence of timing un-
certainty. Lecture given at Georgia Institute of Technology, Atlanta, GA, February
1990.

[7] H. Attiya. Timing properties of distributed systems in the presence of timing uncer-
tainty. Lecture given at Harvard University, March 1990.

[81 C. Dwork. Secret message transmission. September 1989.

[9] C. Dwork. Secret message transmission. Lecture given at Yale University, December
1989.

[10] C. Dwork. Secret message transmission. Lecture given at IBM Thomas J. Watson
Research Center, March 1990.
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15.1 Introduction

The MIT X Consortium was formed in January 1988 to further the development of the
X Window System. The major goal of the Consortium is to promote cooperation within
the computer industry in the creation of standard software interfaces at all layers in the X
Window System environment. MIT's role is to provide the vendor-neutral architectural and
administrative leadership required to make this work. The Consortium is financially self-
supporting, with membership open to any organization. At present, nearly 70 companies
belong to the Consortium, as well as several universities. These members represent the bulk
of the US computer industry, as well as a considerable segment of the international industry.

15.2 Release 4 of the X Window System

One of the primary tasks of the Consortium staff is the maintenance and evolution of a
software distribution containing sample implementations of all interfaces defined by the
Consortium, as well as numerous applications and utilities. In January 1990, Release 4
of this distribution, consisting of 50 megabytes of source code and documentation, was made
available to the world, along with a companion collection of 90 megabytes of code and docu-
mentation of user-contributed software. The distribution is available using anonymous FTP
from numerous Internet sites, and on magnetic tape from the MIT Software Center. Some
of the major improvements in Release 4:

Keith Packard and Bob Scheifler implemented a significantly faster and smaller X server;
more detail is provided in the next section.

Full font support was added for the X Consortium standard X Logical Font Description
conventions, and a fairly rich set of fonts was added for both 75 and 100 dots per inch displays.
Font donations came from Adobe Systems, Digital Equipment Corporation, Bigelow and
Holmes, Sun Microsystems, and Sony Corporation.

A major revision of the Xt Intrinsics has consolidated several independent extensions under-
taken by industry groups in support of product-quality toolkits and modern graphical user
interfaces. The most significant addition is support for windowless widgets (called "gad-
gets"), as well as other resource-based non-windowed objects for general programming. In
addition, varargs-style interfaces, better caching of resources, support for incremental se-
lections, improved error reporting, support for passive device grabs, and a class extension
mechanism were added.

Chris Peterson completely redesigned the Text widget in the Athena Widget Set using the
new object mechanisms in the Xt Intrinsics, providing a clean interface between the text
source and sink, and significantly improving the internal text and resource management.
New functionality was added to provide previously missing features, most notably search'
and replace. Chris reimplemented the Simple Menu widget to use the new object mech-
anisms, providing a much simpler programming interface, as well as reducing the amount
and complexity of the code. Several of our applications have been converted to use the new
menu facilities. Chris also completely rewrote the reference manual for the Athena Widgets,
making it much easier to use and making it reflect the true interface provided by the toolkit.
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Ralph Swick of Project Athena and Keith Packard incorporated support for non-rectangular
windows into the Athena Widget Set and several applications, using the new X Consortium
standard SHAPE extension. Round clocks and oval buttons are two pleasant outcomes of
this work.

Jim Fulton rewrote most of the "twm" window manager (the program that people use to ma-
nipulate windows on the screen), providing X with the first public user interface that imple-
mented the guidelines described in the X Consortium standard Inter-client Communication
Conventions Manual. The window manager was also revised to support non-rectangular
application windows, "tab"-style title bars, and non-rectangular icons, all using the new
SHAPE extension.

Keith Packard did a major overhaul of the "xdm" display manager daemon, cutting the num-
ber of processes used in half, improving the robustness and, most importantly, implementing
the X Consortium standard X Display Manager Control Protocol (XDMCP). XDMCP is
designed to make X terminals as easy to use as traditional character cell terminals, and to
provide a vendor-neutral mechanism for reducing the administrative overhead involved in
managing a large network of X terminals connected to central compute servers.

Jim Fulton enhanced the "xterm" terminal emulator to support 8-bit characters, allowing
the full ISO Latin-1 character set to be used. Chris Peterson similarly enhanced the Athena
Text Widget. Bob Scheifler added simple bilingual keyboard support to the Xlib and Xt
Intrinsics libraries.

Donna Converse substantially reworked the user interface to the "xmh" mail handler pro-
gram. Visually, the interface is simpler, and it is highly configurable. Functionally, xmh is
now more powerful, making it easier for us to process many electronic mail messages each
day. The new xmh makes use of nearly every widget in the Athena Widget Set and adheres
to the Inter-client Communication Conventions.

Chris Peterson made the "xman" manual page browser considerably easier to use, by making
use of the new menus, adding keyboard accelerators, and providing a simple search facility.

Donna Converse also completely reimplemented the interface to the "xcalc" calculator pro-
gram, making it a model demonstration of the power of application default resource files in
allowing end-user customization.

Keith Packard implemented an "xditview" application for displaying ditroff DVI files on an
X display.

Bob Scheifler improved the "xwud" image display program to work with various visual types
and with standard colormaps, and implemented a simple grayscale conversion algorithm for
displaying color images on a monochrome screen.

Jim Fulton integrated client-side support for System V Release 3.2. This allows X appli-
cations to be run on personal computers running the System V operating system, and also
allows X applications to be run on Cray supercomputers.

Donna Converse and Ralph Swick added support for using ANSI C function prototypes, and
made the major C header files usable from C++ as well. Donna fixed the Xlib implementa-
tion to deal gracefully when memory allocation fails.
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15.3 X Server Optimizations

Work on the X sample server over the past year has focused on performance issues. Bob Schei-
fler and Keith Packard completed work on new data structures for the major server resources
(principally windows, regions, and graphics contexts), resulting in one-half to two-thirds re-
duction in total data space in a typical running server. This is an extremely important gain
for low-end X terminals with limited memory.

Keith Packard and Bob Scheifler, along with Joel McCormack of Digital Equipment Cor-
poration, collaborated in designing and implementing new algorithms for manipulating the
window hierarchy. Common window operations, such as create, map, unmap, move, and
resize were all sped up, by factors of between two and twenty. Data structure redesign con-
tributed to the performance increases for window creation and destruction; windows were
redesigned so that instead of being composed of many small, independently allocated pieces,
a single allocation could be used to allocate the entire contents of the most common form of
window.

Keith Packard rewrote most of the device-dependent code for 8-bit color frame buffers, result-
ing in dramatic performance improvements (up to two orders of magnitude, in some cases)
for points, lines, filled areas, text, area copies, and scrolling. Bob Scheifier reimplemented
zero-width arcs and filled arcs, using integer algorithms that run up to 500 times faster
than the previous algorithms. Keith and Bob derived an efficient exact integer algorithm
for scan-converting wide lines with correct pixelization (previous algorithms were sometimes
incorrect); Keith's implementation resulted in an order of magnitude speedup.

One of the performance problems not solved by Release 4 was efficiently dealing (in both
time and space) with all combinations of 16 logical raster operations, in conjunction with
arbitrary plane masks. Either many copies of each piece of code must be compiled (wasteful
in space) or a runtime switch on the operation must be made for each pixel (wasteful in
time). Since Release 4, Keith Packard devised and implemented a raster operation reduction
scheme, which converts an (operation, plane mask) pair into the following boolean equation:

(dst and (src and al xor xl) and (src and a2 xor x2))

where al, a2, xl, x2, and in are constants. Although this equation may look complex, it is
substantially faster than switching on the operation for each pixel. This equation can also
be reduced further in many common cases. For example, when the source is a constant, it
reduces to:

dst and av xor xv

The general equation can be reduced for the most common cases, and these can be cmpiled
individually. For modern RISC processors, it is usually possible to perform several register
operations between memory writes without slowing down, so these algorithms can often still
run at memory speeds.

15.4 Internationalization

Internationalizing a program means making it adaptable to the requirements of different
native languages, local customs, and coded character sets, so that the program can be run in
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different locales without source code modification or recompilation. Typically, the program
will contain some collection of data (e.g., various strings) which need to change for each
locale; this data usually must be external to the executable, so that it can be tailored to and
dynamically selected for the desired locale.

One of the major areas of work within the X Consortium over the past year has been
internationalization. This work has focused on changes to Xlib and the Xt Intrinsics to
support internationalization. The work divides into four main topics: keyboard input, text
display, text interchange, and resource files. A high priority for the work is to keep the
interfaces and specifications as simple as possible, so that they can be understood and used
by the general programming population, not just multi-lingual programmers.

Although many people believe that X should be designed to support true multi-lingual
environments (supporting multiple languages, mixed into a single textual context), it is also
a goal of our work to harmonize with existing formal standards for internationalization. The
most important standard at this time is the ANSI C standard, and its locale mechanism.
Unfortunately, this mechanism is quite biased towards a mono-lingual environment, with a
single, global locale affecting all internationalized operations.

For keyboard input, the most important piece of functionality is supporting input methods,
where multiple keystrokes are used to produce a single character or string of characters. An
example of a very simple input method is the use of diacritical maiks; typically a user will
type a base letter and then a diacritical mark (or vice versa) to produce a single character.
Much more complicated input methods are used in Asia. For example, in Japan it is common
to type in Romaji (composed of Latin letters) which is converted on the fly to Kana characters
and displayed; once a complete word (or phrase or sentence) is entered, a conversion key
is pressed and conversion to Kanji takes place. There may be several Kanji words for a
given Kana representation, and the user may have to choose from a list of alternatives.
This conversion process typically requires fairly complex linguistic mechanisms, and large
dictionaries.

All of this "pre-editing" normally should be hidden entirely from the application, since it is
rather complex and locale-specific. However, this desire conflicts with another desire-that
of providing a smooth integration of pre-edit with normal text editing. While pre-edit is in
progress, there are two basic choices for where to display the pre-edit text: directly inline
with the normal text, called "on the spot," with things like justification (in a WYSIWYG
editor) taking place on the fly, and "off the spot," with the pre-edit text displayed somewhere
below or to the side of the main text window. On the spot pre-editing is generally the most
desirable for end users, but this requires tight coupling between the input method and that
part of the application which is concerned with the actual display of the text. Hence, some
support for pre-edit must be provided by the application in order to support on the spot
pre-edit, although we do not want to require all applications to provide such support.

There are two basic models for implementing input methods: frontend and backend. In the
frontend model, the input method is actually a separate process from the application. While

pre-edit is in progress, keystrokes go to the input method rather than to the application;
once a complete string of characters has been converted, the resulting string is then sent by
the input method to the application. In the backend method, the input method is generally
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linked into the application as a library facility. While pre-edit is in progress, keystrokes
continue to go to the application, which passes them on to the input method for processing.

The frontend model has a number of advantages. For example, it is easy to select an input
method at runtime. This can be important in Asia, because there are generally a number
of different input styles in use for a given language, even within a single organization. It is
also possible to share a single input method process among all applications on the display.
This is important, since the input method typically has very large resident dictionaries, as
well as user-specific dictionaries that can be edited dynamically in one window and auto-
matically propagate to other windows. But the frontend model has disadvantages as well.
For example, it is rather expensive to implement on the spot pre-editing in this model, since
it requires inter-process communication with the application on every keystroke. There are
also significant event synchronization issues that are rather difficult to solve, such as coor-
dinating changes to the input focus. Both frontend and backend models are being used in
Japan, and a goal of our keyboard input design is to support both models, transparent to
the application.

The principal issue in displaying text is mapping from the string encoding used in the ap-
plication to the glyph encoding used for fonts. These encodings easily can be different,
particularly when the string encoding contains a mixture of single-byte and multi-byte char-
acters, or state-dependent control sequences. The goal for internationalized text display
routines is to insulate the application from the complexities of this mapping. As part of this
mapping, it may be necessary to use more than one font to render a given language. For
example, the set of characters used in Taiwan is often viewed as up to sixteen "planes," each
arranged as a two dimensional array of characters, each plane containing several thousand
characters. At most, two planes can be represented with a single X font, so multiple fonts
must be used to display a full set of such Chinese characters. To deal with this, the notion
of a "font group" is introduced, which internally masks the details of the number of fonts
used and the manner in which they are used.

In addition to the encoding issue, there are several other difficult issues for text display. In
some instances, it may be necessary to use multiple glyphs to represent a single character.
A simple example would be to use a Latin font containing only base letters and individual
diacritical marks; a given character would then be displayed by using the glyph for a base
letter, "overstruck" by the appropriate diacritical mark. In some languages with script
letter forms, glyphs representing fragments of letters may be used to compose sequences of
characters with appropriate tie marks. Another problem is "nonlinear" display, in which the
order of glyphs on the screen does not match the order of characters in a string. A major
example is text with both right-to-left and left-to-right text sequences, as occurs in Arabic
and Hebrew. Another example would be the treatment of vowels in Hebrew and various
Arabic derivatives. A goal of the internationalization work is to mask these details from the
application. However, some of them are rather difficult issues, and it remains to be seen how
well this can work.

Text interchange is a somewhat easier problem to deal with. The X Consortium standard
Compound Text can be used as an interchange format for a large number of common lan-
guages. However, Compound Text only provides the raw character information, and does
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not provide any indication of locale; this information is generally needed to process or dis-
play the information. Unfortunately, there are no standards for locale names or for the
locale mechanism defined by ANSI C, and no organized registration mechanism in place to
collect such locale names and attempt to avoid conflicting use of names. This makes true
interchange in a heterogeneous network environment somewhat problematic.

When an X program has been internationalized, it will generally use resource files to obtain
locale-specific data, such as text labels and other visual cues. Simple mechanisms are required
to enable the programmer to select a resource file dynamically, based on the locale, and
resource databases must support locale-specific string encodings.

15.5 Resource Management

As we gain experience with sophisticated toolkits and applications, several problems with
the X Resource Manager facilities have come to light. Chris Peterson has been explor-
ing these problems and developing possible solutions. Four problems being considered are:
easier means for users to override application default resources; support for multiple-value re-
sources; conditional resource matching based on dynamic attributes; and interactive resource
editing.

The current set of matching rules does not take into account the fact that the resource
database created for an application may have been written by many different people. The
database created for a toolkit application is loaded from several sources, with parts sup-
plied by the application programmer and parts supplied by the end user. The application
programmer often wants to be very specific with the resource definitions (e.g., a particular
button should have a border width of 3). Users, on the other hand, often like to be as gen-
eral as possible (e.g., all windows should be green). When these two specifications overlap
the application default setting usually dominates since the more specific resource string will
match.

A possible solution is to allow the resource database to be divided into sections. In essence,
there would be several smaller databases that are searched in order, and if a match is found
for a resource in an earlier section, entries in later sections would be ignored. Typically there
would be two sections; application default resources would normally be loaded into the last
section, and users could ensure an override by placing resources into the first section.

Another class of problem is exemplified by the translation table resources in the Xt Intrinsics.
A text widget typically has a default set of translations built in to the widget. The application
programmer often wants to modify a few of these translations, based on specific use of the
widget within the application. Finally, the end user typically wants to make a few more
modifications, to rebind commands to their liking. Unfortunately, given the entire-value
replacement semantics of the resource manager, the application programmer's modifications
will be lost when the end user tries to make modifications; the only way around this is for
the end users to be aware of the application modifications and to incorporate them directly
as part of their own modifications. This is very undesirable, because later changes by the
application programmer will not propagate automatically.
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A possible solution is allow a resource query to return a list of values, rather than just a
single value. A new resource specification could be introduced to indicate that it augments
a base resource specification, rather than replacing the base. A new lookup function could
be provided to return the base value plus all augmentations. The translation table parsing
in the Intrinsics could then be modified to use this new function, and use the resulting list
of values to produce the desired composite translations.

A growing problem for both developers and users is the inability to specify that a given
resource should be used only on a specific screen, or with a specific visual. For example,
if a server supports two screens, one color and one monochrome, there is no reasonable
mechanism for users to choose different colors depending on which screen an application is
on. For developers, there is no way to make such choices within application default resource
files, so applications are typically configured by default to only use black and white, even
when they are displayed on a color screen.

A possible solution is to add a preprocessor-style language to the resource specification
syntax, one that allows the application to make conditional comparisons to check attributes
dynamically, at resource lookup time. Simply preprocessing the resource file when it is
loaded is not an adequate solution, since the attributes to be matched may vary within an
application as different objects search for their resources. For example, a given application
might place windows on more than one sc-ren of a given server. When querying a resource
from the database, the application would supply a set of attributes, and these would be
used to evaluate the conditional expressions to produce a (logically) modified instance of the
database to resolve the query against. Typical attributes might be which screen, the visual
class of the window, the number of bits per pixel being displayed, the particular host where
the application is executing, and the particular server where the application is displaying.

A final problem that many users experience is mapping between printed documentation
about resources for an application and the actual visual pieces of the application affected by
those resources. Often, it would be easier to work in an inverse manner, namely pointing at
an object on the screen and asking what resources are associated with it. Chris Peterson has
been prototyping a possible extension to the Xt Intrinsics to support this, in combination
with a resource editor program. The user can click on any application window, and the
editor will graphically display a tree showing the widgets used by the application. The user
can pan over this tree, select individual widgets, and dynamically modify their resources.
The user can also select a node in the tree, and have the corresponding widget in the
actual application highlighted. At present, to learn the complete set of resources supported
by a widget, a companion application written by Jim Fulton can be used. This program
graphically displays a tree showing the class hierarchy of the Athena Widgets. Individual
classes can be selected, and their resources can be displayed. Eventually, the resource editor
will be enhanced to query the application directly for the set of supported resources.

15.6 User Interface Monitoring

Good graphical user interfaces are difficult and time consuming to create. An interactive
design process is often desirable, involving the construction and evaluation of prototypes.
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Evaluation requires an effective means of recording and analyzing interactions between the
user and the application.

Jolly Chen examined how monitoring mechanisms can De added to a user interface archi-
tecture to provide intrinsic support for recording the human-computer dialogue. Previous
approaches to monitoring have generally captured information either at a very high level,
requiring modification of the applicaticn, or at a very low level, recording keystrokes and
other raw device events. Both of these levels have significant drawbacks, either requiring
significant modification to the application or requiring an extremely detailed knowledge of
the application in order to map low level events into meaningful semantic actions.

The key to intrinsic monitoring is inspection of the communication channels between the
application objects and the interaction objects within a program. The informn tion commu-
nicated at this level does not capture the full semantic intent of the user, but it does offer a
higher level view of the user's actions than that offered by recording raw device events. For
example, instead of recording only that a mouse button was pressed at location (100, 300),
it is possible to record that the second item on a particular menu was selected. If the user
interface architecture satisfies a few straightforward requirements, intrinsic monitoring can
be easily added, without requiring support from the application programmer.

Jolly implemented such a monitoring mechanism with a few small changes to the Xt In-
trinsics. The Xt Intrinsics architecture provides two main communication channels between
the application and interaction objects: callbacks and actions. Both of these channels are
easy to monitor. Actions can also be used for communication within and between inter-
action objects, but this level of detail is often of interest to the user interface evaluator as
well, particularly when evaluating the design of new interaction objects. Using the standard
object naming conventions of the Intrinsics, resources can be defined to enable and disable
recording of individual callbacks and actions, or groups of them.

The monitoring mechanism is unobtrusive with respect to the user interface, and does not
appear to impose a significant performance penalty. Jolly also implemented an analysis tool
to process the resulting data. The tool is essentially a database application with a graphical
user interface, designed specifically for storing and querying the monitored incidents. The
tool provides various means for filtering, sorting, and summing the incidents. For example,
one can query for all incidents that occurred in a tiext widget and had a duration of greater
than half a second, or count the number of sequences of three incidents that begin with a
Help action and end with an Abort action.

15.7 Test Suite

The X Testing Consortium was a loosely bound group of approximately one dozen companies,
working together on comprehensive tct software for the X protocol and the Xlib C language
interface to it. The Testing Consortium produced an Alpha Release of the test suite in
August 1989, its last official act. It is generally agreed that the test s-'ite is still a long
way from being complete, and requires a fairly careful review before substantial new work is
performed. Bob Scheifler put together a Request For Proposals for further development of
the test suite. Nine bids were received, and they were reviewed by a multi-vendor committee
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headed by Bob Scheifler. A single firm has been chosen as subcontractor on the work, which
is expected to take two years to complete, although several releases of the suite will be
produced in the interim for evaluation by the X Consortium. A major goal of the work is to
make the suite usable for regression testing, for validation of systems claimed to conform to
Federal Information Processing Standard (FIPS) 158 on the X Window System, and for use
by industry organizations in branding systems as compliant with their standards.

15.8 X Conference

In January 1990, we hosted the Fourth Annual X Technical Conference. The purpose of
the conference is to present and discuss leading edge research and development in the X
environment from both academia and industry. Having outgrown MIT facilities, this year
the conference was held at the Boston Marriott Copley Place. The conference consisted of
seven tutorials, 26 talks, and 23 informal "birds of a feather" sessions, spread over three
days. Major themes were object-oriented toolkits and user interface management systems,
X server performance issues, multithreaded clients and servers, input synthesis for regression
testing, and novel window managers. Bob Scheifler and Donna Converse handled most of
the details for the technical program. Donna Converse and Michelle Leger handled the bulk
of the organizational details, including scheduling, catering, conference proceedings, and
video tape coordination. MIT Conference Services handled registration. The conference was
attended by approximately 1200 people, and was very well received.
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